Differential Equations: exact equation

by jimmypoopins
Tags: differential, equation, equations, exact
 P: 65 i fell asleep when the professor went over how to solve exact equations :-/ i know it's really easy but despite reading the chapter over and over i still can't get it right. please show me where i'm going wrong / what to do next. 1. The problem statement, all variables and given/known data Determine whether the equation in problem 1 is exact. If it is exact, find the solution. $$(2x + 3) + (2y - 2)y' = 0$$ 2. Relevant equations 3. The attempt at a solution $$(2x + 3)dx + (2y - 2)dy = 0$$ $$M_{y} = 0 = N_{x} = 0$$ <--- the equation is exact $$\psi_{x} = 0$$ --> $$\psi = \int^x 0dx = x + h(y)$$ $$\frac{d\psi}{dy} = h'(y) = 2y - 2$$ ---> $$h(y)= y^2 - 2y$$ and then i get stuck. i'm not sure where to go from there. the answer to the problem is $$x^2 + 3x + y^2 - 2y = c$$, which is apparent to me if you turn the original equation into a separable one, but that's not possible with all exact equations. thanks for your time everyone.