## Work/force/kinematics slingshot problem

[b]1. An average force of 8.2 newtons is used to pull a .4 kg rock, stretching a sling shot 43 centimeters. The rock is shot downward from a bridge 18 meters above a stream. What will be the velocity of the rock just before it hits the water? How much time will it take to hit the water.

2. Relevant equations

[b]3. I just want to know if the spring/work equation, .5k(x)squared=w applies to the slingshot, and would stretching it by 43 CM = the x part of the equation? I don't know what to do once I get work. How do i get the velocity of the rock? I know A after shot would be 9.8, d is 18, but is final Velocity 0?

 PhysOrg.com science news on PhysOrg.com >> 'Whodunnit' of Irish potato famine solved>> The mammoth's lament: Study shows how cosmic impact sparked devastating climate change>> Curiosity Mars rover drills second rock target

Recognitions:
Homework Help
 Quote by Shadowsol [b]3. I just want to know if the spring/work equation, .5k(x)squared=w applies to the slingshot, and would stretching it by 43 CM = the x part of the equation? I don't know what to do once I get work. How do i get the velocity of the rock? I know A after shot would be 9.8, d is 18, but is final Velocity 0?
It does apply, and yes. The spring PE is converted to KE. That's how you get the velocity. Final velocity nowhere is zero.

 Ok, so I put in the force*the distance it was pulled back to get the potential sling shot energy. I than set that equal to the KE equation and got V. Than I simply used that V as V0, used 9.8 as A, and 18 m as D, than solved for V1. Is this correct?

Recognitions:
Homework Help

## Work/force/kinematics slingshot problem

Absolutely. You find the time using the same kinematics.