# Energy-momentum tensor for a scalar field (sign problem!)

by knobelc
Tags: energymomentum, field, scalar, sign, tensor
 P: 14 Hi I have a small subtle problem with the sign of the energy-momentum tensor for a scalar field as derived by varying the metric (s.b.). I would appreciate very much if somebody could help me on my specific issue. Let me describe the problem in more detail: I conform to the sign convention $g_{\mu \nu} = (+,-,-,-)$. The Lagranagian for a real scalar field is $$\mathcal{L} = \frac{1}{2} \dot{\Phi}^2- (\nabla \Phi)^2 - V(\Phi ) = \frac{1}{2} g^{\mu \nu} \partial_\mu\Phi \;\partial_\nu\Phi- V(\Phi ).$$ From Noether Theorem we find the energy-momentum tensor $$T^{\mu \nu} = \frac{\partial \mathcal{L}}{\partial (\partial_\mu \Phi)} \: \partial^\nu \Phi - \mathcal{L} g^{\mu \nu} = \partial^\mu \Phi \partial^\nu \Phi - \mathcal{L} g^{\mu \nu}.$$ Now I want to derive this via varying the action $$S = \int \mathcal{L} \sqrt{-g}\; dx^4$$ in respect to $g_{\mu \nu}$. In particular it holds $$\delta S = \delta\int \mathcal{L} \sqrt{-g}\; dx^4 = -\frac{1}{2}\int T_{\mu \nu} \delta g^{\mu\nu} \sqrt{-g}\; dx^4.$$ $T_{\mu \nu}$ is defined so that varying the action derived from the total Lagrangian $$\mathcal{L_{\rm tot}} = \frac{1}{16\pi G} R + \mathcal{L}$$ yields the Einstein field equations $$G_{\mu \nu} = 8\pi G T_{\mu \nu}.$$ (Note that $$\delta\int\frac{1}{16\pi G} R \sqrt{-g}\; dx^4 = \int G_{\mu \nu} \delta g^{\mu \nu}\sqrt{-g}\; dx^4,$$ therefore the - sign in the definition of $T_{\mu \nu}$.) Now let's vary the lagrangian of the scalar field: $$\delta \int \mathcal{L} \sqrt{-g}\; dx^4$$ $$= \int \delta(\mathcal{L}) \sqrt{-g} + \mathcal{L} \delta(\sqrt{-g})\; dx^4$$ $$= \int \delta \left( \frac{1}{2} g^{\mu \nu} \partial_\mu\Phi \;\partial_\nu\Phi- V(\Phi ) \right) \sqrt{-g} + \mathcal{L} \left(-\frac{1}{2} g_{\mu \nu} \delta g^{\mu \nu}\right) \sqrt{-g}\; dx^4$$ $$= \frac{1}{2}\int \left( \delta g^{\mu \nu} \partial_\mu\Phi \;\partial_\nu\Phi - \mathcal{L} g_{\mu \nu} \delta g^{\mu \nu} \right) \sqrt{-g}\; dx^4$$ $$= \frac{1}{2}\int \left(\partial_\mu\Phi \;\partial_\nu\Phi - \mathcal{L} g_{\mu \nu} \right) \delta g^{\mu \nu} \sqrt{-g}\; dx^4.$$ Comparing this with the definition of the $T_{\mu \nu}$ yields $$T_{\mu \nu} = -\partial_\mu \Phi \partial_\nu \Phi + \mathcal{L} g_{\mu \nu}$$ leading to the opposite sign as derived by the Noether Theorem. I would appreciate very much if somebody could explain why I get the sign wrong. I know this is a subtle (and possibly unimportant) issue but getting the wrong sign without understanding why gives a bad feeling. Thank you for any help!
 Mentor P: 5,883 According to Wald the Klein-Gordon energy-momentum tensor from Noether's theorem agrees with the Klein-Gordon energy-momentum tensor from varying the metric "up to a numerical factor." I do not know if the numerical factor is -1. Wald says that in others cases, there is less agreement, and it is the energy-momentum arrived at by varying g that appears on the right of Einstein's equation. If you have Wald, look near the bottom of page 457. I first ran into differences between the canonical and symmetric energy-momentum tensors in section 12.10 of Jackson.
 P: 14 I think, I got the reason for the wrong sign. Since I used the signature $g_{\mu \nu} = (+,-,-,-)$ my definitions of $T^{\mu \nu}$ and $\mathcal{L_{\rm tot}}$ are not correct. With my signature the correct expressions read as $$\delta S = \delta\int \mathcal{L} \sqrt{-g}\; dx^4 = +\frac{1}{2}\int T_{\mu \nu} \delta g^{\mu\nu} \sqrt{-g}\; dx^4.$$ and $$\mathcal{L_{\rm tot}} = -\frac{1}{16\pi G} R + \mathcal{L}.$$ With this I get everything right. :-)

 Related Discussions Special & General Relativity 9 Special & General Relativity 1 Classical Physics 2 Quantum Physics 2 Cosmology 4