How Does Temperature Affect Radioactive Decay Rates?

Click For Summary
Heating a radioactive substance can reduce its radioactivity due to relativistic thermal motion of atoms, but significant effects require extremely high temperatures, around billions of degrees. The average thermal energy at typical temperatures (like 11,000 K) is far below what is needed to induce measurable changes in decay rates. A formula relating radioactive decay rate, temperature, and mass is provided: λ' = λ / (3/2 kT/mc^2 + 1), indicating that the impact of temperature on decay rates is minimal. Radiation is fundamentally a nuclear property, while temperature is more related to atomic behavior. Therefore, while temperature does affect decay rates, the practical implications are negligible under normal conditions.
DiamondGeezer
Messages
126
Reaction score
0
I know that if a radioactive substance is heated, then the radioactivity is reduced because of the relativistic thermal motion of the atoms.

Is there a formula linking radioactive decay, temperature and perhaps, heat capacity?
 
Physics news on Phys.org
DiamondGeezer said:
I know that if a radioactive substance is heated, then the radioactivity is reduced because of the relativistic thermal motion of the atoms.

The problem is that in order for this to be significant, the thermal energy of the particles needs to be of the order of their rest masses. Now, the rest mass of a single proton or neutron (expressed in energy units) is of the order of 1 GeV. At a temperature of 11 000 K, the average thermal energy of a particle is about 1 eV (that's given by the ratio of the Boltzman constant and the elementary charge). So in order for hydrogen atoms to have thermal energies which make them move relativistically in a significant way, we'd have to heat them to about 11 000 billion degrees. In order to do so for a radioactive nucleus with about 100 protons and neutrons, that's 100 times more even.

But by that time, they are undergoing already a lot of nuclear interactions!
 
To the first order of magnitude you're looking at something like this

\lambda' = \lambda / (3/2 kT/mc^2 + 1)

where \lambda is the rate of decay, k is Boltzmann constant, T is temperature, and m is mass of the atom.

The effect is there but it's tiny. You'd have to heat the substance to billions of degrees to get anything remotely measurable.
 
DiamondGeezer said:
I know that if a radioactive substance is heated, then the radioactivity is reduced because of the relativistic thermal motion of the atoms.

Is there a formula linking radioactive decay, temperature and perhaps, heat capacity?
Relativistic thermal motion would imply an extraordinarily high temperature - some thing beyond normal experience in the terrestrial environment.

Radiation is a nuclear property as opposed to temperature and heat capacity (or specific heat) which are atomic or interatomic properties.
http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/spht.html

http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/temper.html
A convenient operational definition of temperature is that it is a measure of the average translational kinetic energy associated with the disordered microscopic motion of atoms and molecules.

Thermal energies of atoms are on the order of 0.02 eV at about room temperature.
 
hamster143 said:
To the first order of magnitude you're looking at something like this

\lambda' = \lambda / (3/2 kT/mc^2 + 1)

where \lambda is the rate of decay, k is Boltzmann constant, T is temperature, and m is mass of the atom.

The effect is there but it's tiny. You'd have to heat the substance to billions of degrees to get anything remotely measurable.

Let's see that first approximation again:

\lambda' = \frac{\lambda}{ \frac{\frac{3}{2}kT}{mc^2} +1}

Is that correct?
 
Hi everyone, I am doing a final project on the title " fundamentals of neutrino physics". I wanted to raise some issues with neutrino which makes it the possible way to the physics beyond standard model. I am myself doing some research on these topics but at some points the math bugs me out. Anyway, i have some questions which answers themselves confounded me due to the complicated math. Some pf them are: 1. Why wouldn't there be a mirror image of a neutrino? Is it because they are...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 20 ·
Replies
20
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 35 ·
2
Replies
35
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K