Where EXACTLY is the "Mass" of an Atom? Proton? Quark? Hadron? Gluon??


by NoVA101
Tags: atom, gluon, hadron, mass, proton, quark
NoVA101
NoVA101 is offline
#1
Jan13-09, 12:31 PM
P: 26
Just look at the simplest Hydrogen atom -- one Proton. The question is *where* exactly is the mass of this thing? Or *what* makes up the mass of this thing? Is it just Quarks? So where is the *mass* of those things? Where is the difference between mass and energy. Is there any? Is there really such a thing as mass, or is it all just energy appearing in different forms? Does anyone know? Is this the end of Physics and the beginning of Philosophy, again meaning no one really knows???

No one seems to have made this clear on Wikipedia either...
http://en.wikipedia.org/wiki/Mass
http://en.wikipedia.org/wiki/Quark#Mass
In a hadron most of the mass comes from the gluons that bind the constituent quarks together, rather than from the individual quarks; the mass of the quarks is almost negligible compared to the mass derived from the gluons' energy.
Really? Mass comes from gluon energy? If so is there really such a thing as mass, or is there only energy? Why do we think a rock has "mass"? Is a rock really a bunch of energy, but at our scale we perceive it as this so-called "mass" stuff?
Phys.Org News Partner Physics news on Phys.org
Physicists design quantum switches which can be activated by single photons
'Dressed' laser aimed at clouds may be key to inducing rain, lightning
Higher-order nonlinear optical processes observed using the SACLA X-ray free-electron laser
DavidSnider
DavidSnider is offline
#2
Jan13-09, 02:00 PM
PF Gold
P: 431
http://en.wikipedia.org/wiki/Mass-energy_equivalence
NoVA101
NoVA101 is offline
#3
Jan13-09, 02:55 PM
P: 26
Right, I get that. But if you hold a rock in your hand (apparently a bunch of matter), and you look closer and closer at it, where is the actual "matter" and where is the "energy"?

DavidSnider
DavidSnider is offline
#4
Jan13-09, 03:10 PM
PF Gold
P: 431

Where EXACTLY is the "Mass" of an Atom? Proton? Quark? Hadron? Gluon??


Matter is a form of energy. It's kind of like asking where the water in an ice cube is.
NoVA101
NoVA101 is offline
#5
Jan14-09, 01:15 PM
P: 26
Quote Quote by DavidSnider View Post
Matter is a form of energy. It's kind of like asking where the water in an ice cube is.
Well I guess the question is -- is there any such thing as matter at all, or is there ONLY energy? What is the distinction? When you look closely into a proton, where is the "matter", or is there no such thing, there is only energy that just appears to be matter but only at a certain scale?
malawi_glenn
malawi_glenn is offline
#6
Jan14-09, 01:20 PM
Sci Advisor
HW Helper
malawi_glenn's Avatar
P: 4,739
We had that discussion in several other threads this week regarding "mass - energy"

I mean we can always go further down in scale, til we encounter strings or whatever is the building block for the gluons and quarks.

But speaking in terms of standard model, the mass of hydrogen is proton + electron - bidning energy (13.6eV). The mass of the proton is mass of valence quarks + quark/gluon sea (the binding energy of the proton, which is positive in this case)
Vanadium 50
Vanadium 50 is offline
#7
Jan14-09, 01:41 PM
Mentor
Vanadium 50's Avatar
P: 15,604
I think it's a mistake to try and say the energy (or mass) is in one place. Energy (and mass) is a property of configurations of objects.

Consider two photons flying away from each other. Neither has mass. But the system does.
malawi_glenn
malawi_glenn is offline
#8
Jan14-09, 01:42 PM
Sci Advisor
HW Helper
malawi_glenn's Avatar
P: 4,739
One can ask what makes up the mass, but not "where is the mass located"
0xDEADBEEF
0xDEADBEEF is offline
#9
Jan14-09, 02:20 PM
P: 824
The answer to this requires years of physics studies:

Things get more heavy in different reference frames, mass defect, mass hyperboloid, inertial or gravitational mass... First you should probably know what mass you are referring to.

Then we have the problem that "where" doesn't work anymore in quantum mechanics, if you have any information about the speed/the energy.

Then we can dissolve massive particles into electromagnetic energy and back, which happens like mad in the calculations for tiny time differences.

But for most purposes we just say the atom has mass and that's it.
On the next level we say the proton and the electrons have mass but these objects don't exist in a place anymore, but they just appear there when we measure. The proton can be broken down further, but it changes its apearence depending on the speed of our probe.

"The everything is energy approach" which many "new age"y people seem to fantasize, fails pretty badly for electrons, which have 0 size, so no known substructure and carry a mass.
humanino
humanino is offline
#10
Jan14-09, 03:47 PM
humanino's Avatar
P: 2,828
Quote Quote by 0xDEADBEEF View Post
Then we have the problem that "where" doesn't work anymore in quantum mechanics, if you have any information about the speed/the energy.
That is a bit simplistic, so I would like to specify that energy distributions still exist in the quantum world.
Quote Quote by 0xDEADBEEF View Post
Then we can dissolve massive particles into electromagnetic energy and back, which happens like mad in the calculations for tiny time differences.
Talking about the proton mass, the strong interaction is more relevant than the electromagnetic one, which is a small (albeit important) correction.
Quote Quote by 0xDEADBEEF View Post
The proton can be broken down further, but it changes its apearence depending on the speed of our probe.
I think it would be more appropriate to talk about scale dependence. In particular, the concept of "speed" (as a spatial derivative) is not very well suited to virtual particle. At best, let's talk about momentum transfer.
Georgepowell
Georgepowell is offline
#11
Jan14-09, 05:23 PM
P: 163
Quote Quote by NoVA101 View Post
What is the distinction
I think the distinction occurs when talking about inertia.

A photon does not have inertia, but does have mass. And so energy on its own does not have inertia.
humanino
humanino is offline
#12
Jan14-09, 05:34 PM
humanino's Avatar
P: 2,828
Quote Quote by Georgepowell View Post
A photon [...] does have mass.
How do I measure the mass of a photon ?
Quote Quote by Georgepowell View Post
And so energy on its own does not have inertia.
What would be an instance of "energy on its own" ? Where can I find that ?
Georgepowell
Georgepowell is offline
#13
Jan14-09, 05:43 PM
P: 163
Quote Quote by humanino View Post
How do I measure the mass of a photon ?
What would be an instance of "energy on its own" ? Where can I find that ?
I should have been more clear, what I meant was: A photon has a gravitational pull, but no inertia. So they are not exactly the same thing. The way you could measure it is by watching how much light bends when it passes large stars. And then treat it as a particle and find the mass that it would have if it was a particle.

And what I meant by that was just because something has energy, it does not necessarily have "mass" (as in the kind of mass that has inertia).
humanino
humanino is offline
#14
Jan14-09, 05:47 PM
humanino's Avatar
P: 2,828
Quote Quote by Georgepowell View Post
A photon has a gravitational pull
I thought photons always use the straightest spacetime trajectories (geodesics).
Quote Quote by Georgepowell View Post
The way you could measure it is by watching how much light bends when it passes large stars. And then treat it as a particle and find the mass that it would have if it was a particle.
Do you mean, applying Newton's formulae and deducting the equivalent mass ?
Georgepowell
Georgepowell is offline
#15
Jan14-09, 05:55 PM
P: 163
Quote Quote by humanino View Post
I thought photons always use the straightest spacetime trajectories (geodesics).
Yeah, and that means that they follow a curved path in our 3 dimensional world. And always curve towards massive objects. I think, but I am not sure at all, that the higher the frequency of an photon (and the higher energy) the more gravitational attraction it has and so the higher frequency photons curve round things more.


Quote Quote by humanino View Post
Do you mean, applying Newton's formulae and deducting the equivalent mass ?
Yes

btw; I am not an expert on this.

[edit] Can someone confirm if I am right or not please, I don't want incorrect things to be in this thread[edit]
Sideways
Sideways is offline
#16
Jan16-09, 10:01 AM
P: 22
"All of the above" would be an accurate answer.

As for where these basic constituents derive their masses, well, we believe it's through interaction with the Higgs field. LHC experiments in the coming years will (hopefully) shed some light on that issue.
NoVA101
NoVA101 is offline
#17
Jan16-09, 10:26 AM
P: 26
Quote Quote by Sideways View Post
"All of the above" would be an accurate answer.

As for where these basic constituents derive their masses, well, we believe it's through interaction with the Higgs field. LHC experiments in the coming years will (hopefully) shed some light on that issue.
So mass is the result of an interaction? With a field? The interaction of what with a field? And is an "interaction" another way of saying "energy", or not? And you mean we have to do more experiments because we really don't know? Is all of this to say that we really don't know what-the-heck mass actually is? How very strange!
Sideways
Sideways is offline
#18
Jan16-09, 11:59 AM
P: 22
Quote Quote by NoVA101 View Post
So mass is the result of an interaction? With a field? The interaction of what with a field? And is an "interaction" another way of saying "energy", or not? And you mean we have to do more experiments because we really don't know? Is all of this to say that we really don't know what-the-heck mass actually is? How very strange!

It is kind of strange. Truth is, it's still basically a mystery where the masses of fundamental particles come from. So far, they are just input parameters for the Standard Model.


Register to reply

Related Discussions
A note on "Quark Soup" General Physics 1
Why Isn't a "Gluon Beam" Possible? General Physics 5
Re: Why Isn't a "Gluon Beam" Possible? General Physics 1
Do protons also exist as "proton waves" similar to the "electron waves"? High Energy, Nuclear, Particle Physics 8
"nuclear" fission produces quark mass General Physics 1