Register to reply

Write the Magnetic Field of a dipole in coordinate-free form?

Share this thread:
Feb20-09, 09:39 AM
P: 7
1. The problem statement, all variables and given/known data
Show that the magnetic field of a dipole can be written in coordinate-free form: B_dip (r)=(μ_o/(4πr^3 ))[3(m*r ̂ ) r ̂-m]

2. Relevant equations
Adip(r)= (μ_o/(4πr^2))(m*sin(theta))

Bdip= curl A = (μ_o*m/(4πr^3))(2cos(theta)(r-direction)+sin(theta)(theta-direction)

3. The attempt at a solution
I figure this must have something to do with the above equations for the vector potential dipole and magnetic field dipole, I just dont have any idea what it means to write in 'coordinate-free form', or how to go about that..
Can anybody point me in the right direction?
Phys.Org News Partner Science news on
Scientists develop 'electronic nose' for rapid detection of C. diff infection
Why plants in the office make us more productive
Tesla Motors dealing as states play factory poker
Tom Mattson
Feb20-09, 01:32 PM
Sci Advisor
PF Gold
Tom Mattson's Avatar
P: 5,532
"Coordinate free" simply means "in terms of dot products". See how the expression they want you to derive has dot products in it? That's what they want.
Feb20-09, 05:59 PM
P: 2
You can [tex]\TeX{}[/tex]-ify your posts. It helps a *lot.* Here's the coordinate-free form:

[tex]\vec{B}_{dip}(\vec{r}) = \frac{\mu_0}{4 \pi r^3}[3(\vec{m} \cdot \hat{r})\hat{r} - \vec{m}][/tex]

where [tex]\vec{m}[/tex] is the dipole moment, right? (I've always used [tex]\vec{p}[/tex].)

Vector potential [tex]\vec{A}[/tex] is

[tex]\vec{A}_{dip}(\vec{r}) = \frac{\mu_0}{4 \pi r^2} (m \sin \theta)[/tex]

Magnetic field [tex]\vec{B}[/tex] is

[tex]\vec{B}_{dip}(\vec{r}) = \vec{\nabla} \times \vec{A} = \frac{\mu_0 m}{4 \pi r^3} (2 \cos \theta \hat{r} + \sin \theta \hat{\theta})[/tex]

To get coordinate-free form, you just need to express [tex]\vec{m}[/tex] in spherical coordinates and manipulate the properties of dot products in that coordinate system. If you assume your dipole is at the origin and points in the [tex]+\hat{z}[/tex] direction, then in spherical it would be [tex]\vec{m} = m \cos \theta \hat{r} - m \sin \theta \hat{\theta}[/tex]. Now use dot products of [tex]\vec{m}[/tex] with the necessary spherical unit vectors in order to eliminate those pesky sine and cosine functions.

Register to reply

Related Discussions
Magnetic Field of Magnetic Dipole Moment Classical Physics 8
Magnetic dipole in an external magnetic field General Physics 3
Question about a magnetic dipole in an inhomogeneous magnetic field.Please help ASAP Advanced Physics Homework 3
Deriving the energy of a magnetic dipole in a magnetic field Introductory Physics Homework 8
Deriving the energy of a magnetic dipole in a magnetic field Classical Physics 1