Register to reply

Cascaded low pass filters problem

Share this thread:
Stef42
#1
Feb23-09, 06:32 PM
P: 10
1. The problem statement, all variables and given/known data
Given the coupled RC network shown below (see attachment), show that the voltage transfer function is
[tex]\frac{Vout}{Vin}=\frac{1}{(1-\omega^2C^2R^2)+3j\omega CR}[/tex]

Hint: [tex]\frac{Vout}{Vin}=\frac{V1}{Vin}\frac{Vout}{V1}[/tex]
2. Relevant equations
For Capacitor, [tex]Z=\frac{1}{j\omega C}[/tex]
General Potential divider equation [tex]Vout=\frac{Z2}{Z1+Z2}Vin[/tex]

3. The attempt at a solution
I find this all a bit confusing :( I know that the second filter is acting as a load for the first filter, so I know I just can't write
[tex]V1=\frac{1}{j\omega C}\frac{1}{R+\frac{1}{j\omega C}}Vin[/tex]
So would I need to combine the total impedance of the second filter with the impedance of the first capacitor?
Actually, could someone clear up impedance and reactance? For a capacitor reactance is
[tex]X=\frac{1}{\omega C}[/tex]
while its impedance is
[tex]Z\frac{1}{j\omega C}[/tex]
So if a resitor is connected in series, how/what would I combine to obtain the total resistance/impedance?

Any help would be appreciated, I think you can tell that my ideas are a bit muddled :s
thanks
SG
Attached Thumbnails
circuit.jpg  
Phys.Org News Partner Science news on Phys.org
Bees able to spot which flowers offer best rewards before landing
Classic Lewis Carroll character inspires new ecological model
When cooperation counts: Researchers find sperm benefit from grouping together in mice
Stef42
#2
Feb24-09, 12:19 PM
P: 10
Just like to say I finally got it :)
I just used [tex]V=IZ[/tex] really.
Say that current [tex]I[/tex] flows through the first filter and current [tex]I_{1}[/tex] goes through the second one.
Starting from the right, [tex]I_{1}=j\omega C\times V_{out}[/tex]

[tex]RI_{1}=j\omega CR V_{out}[/tex]

[tex]V_{1}=RI_{1}+V_{out}=(j\omega CR+1) V_{out}[/tex]

[tex]RI=R(I_{1}+j\omega C V_{1})=(2j\omega CR-\omega^2 C^2R^2)V_{out}[/tex]

[tex]V_{in}=RI+V_{1}=(1+3j\omega CR-\omega^2 C^2R^2) V_{out}[/tex]

hence original result is obtained.
Kruum
#3
Feb24-09, 01:42 PM
P: 220
Glad you figured it out! If you still need to know the difference between impedance and reactance, it's quite simple: reactance is the imaginary part of impedance. Plus resistance is the real part of impedance.


Register to reply

Related Discussions
High Pass filter & Low Pass Filters features Engineering, Comp Sci, & Technology Homework 1
Low pass & High pass filters Engineering, Comp Sci, & Technology Homework 3
Band pass filter and op-amp problem Engineering, Comp Sci, & Technology Homework 2
Cascaded Amplifier Design Electrical Engineering 1
Band Pass Filters Introductory Physics Homework 6