Finite Differences in Inhomogeneous Media

  • Thread starter Thread starter Excom
  • Start date Start date
  • Tags Tags
    Finite
Click For Summary
The discussion focuses on solving the Poisson equation using the Finite Difference Method in inhomogeneous media with embedded charge distributions. Key literature recommendations include the Yee algorithm for Maxwell's Equations and texts by Chew and Jin, although the latter are not the most comprehensive. Stability conditions and absorbing boundary conditions are highlighted as crucial aspects of the problem. Taflove's textbook on FDTD is noted as a valuable resource, while Harrington's work offers insights into solving Poisson's equation with the Method of Moments, albeit with added complexity due to inhomogeneity. Overall, these resources provide a foundation for tackling the challenges of the Poisson equation in complex media.
Excom
Messages
58
Reaction score
0
Hi

I am trying to solve the Poisson equation, with the use of the Finite Difference Method, for a inhomogeneous media with some charge distributions embedded in the media.

Is there anyone that know some literature, which treats this subject?

Thanks in advance
 
Physics news on Phys.org
Not Poisson's specifically but you can find a bevy of material on doing Maxwell's Equations. The seminal paper is the Yee algorithm but you can find discussions about FDTD in Chew's Waves and Fields in Inhomogeneous Media or Jin's The Finite Element Method in Electromagnetics (not the best books on the subject but I can't remember the third text I am thinking of, author's name starts with a "T"). Probably the main thing that you need to learn is defining the stability conditions and looking into absorbing boundary conditions or perfectly matched layers though the latter is negated by sufficiently increasing the problem space.

EDIT: Taflove! That's his name. He has a great textbook all about FDTD. If you want to take a look at how to solve Poisson's equation using another technique, Harrington's text discusses how to solve it using the Method of Moments but adding inhomogenous medium makes it a little more annoying.
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
10K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K