Cross product

1. The problem statement, all variables and given/known data
a) Let v be a unit vector in R^3 and u be a vector which is orthogonal to v. Show v x (v x u) = -u
b) Let v and u be orthogonal unit vectors in R^3. Show u x (v x (v x (v x u))) = -v

2. Relevant equations

3. The attempt at a solution

I am very lost in this question, I know a unit vector is = 1 therefore the summuation of the vector v is 1 for example, v = (1,0,0). square root(1^2 + 0 + 0) = 1 and i know u dot v is 0 but how do i start the prove?

thank you
 PhysOrg.com science news on PhysOrg.com >> Ants and carnivorous plants conspire for mutualistic feeding>> Forecast for Titan: Wild weather could be ahead>> Researchers stitch defects into the world's thinnest semiconductor
 Recognitions: Homework Help Apply the vector triple product for the first one then simplify. Do it repeatedly for the second.
 Recognitions: Homework Help Science Advisor That's one way to do it - the other is to think about the geometry. You know that u and v are orthogonal, so that u,v, vxu are all orthogonal, hence you know that vx(vxu) is parallel to u (since it is orthogonal to both v and vxu). What about its length? Again, just think about the geometric meaning. You should be able to show that vx(vxu) has length 1. Now you just need to consider if that means it is u or -u.

Recognitions:
Gold Member
$$\vec{u}\times\vec{v}= \left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ a & 0 & 0 \\0 & b & 0\end{array}\right|$$