Register to reply

Normalization of a Wave Function

by r16
Tags: function, normalization, wave
Share this thread:
r16
#1
May29-09, 02:03 PM
P: 42
1. The problem statement, all variables and given/known data
I'm starting to (trying) teach myself some quantum mechanics out of the Griffiths book, and since there are no answers in the back I have no idea if I'm on the right track or not. Could you guys look over the answer to this equation to see if it looks right?

Consider the wave function [tex] \Psi(x,t) = A e^{-\lambda |x|}e^{-i \omega t}[/tex]

a Normalize [tex]\Psi[/tex]

2. Relevant equations
[tex] 1 = \int^\infty_{-\infty} | \Psi |^2 dx [/tex]


3. The attempt at a solution
[tex]|\Psi(x,t)|^2 = (\Psi*)\Psi[/tex]
[tex]\Psi* = A e^{-\lambda |x|}e^{i \omega t}[/tex]
[tex]|\Psi(x,t)|^2 = A^2e^{-2 \lambda |x|}[/tex]

[tex] 1 = \int^\infty_{-\infty} A^2e^{-2 \lambda |x|} dx = \frac{A^2}{\lambda} [/tex]
[tex] A = \sqrt{\lambda}[/tex]

Look correct?
Phys.Org News Partner Science news on Phys.org
Mysterious source of ozone-depleting chemical baffles NASA
Water leads to chemical that gunks up biofuels production
How lizards regenerate their tails: Researchers discover genetic 'recipe'
Cyosis
#2
May29-09, 02:11 PM
HW Helper
P: 1,495
That is correct. Don't forget you can check your answer by integrating the function with your normalization constant plugged in.
flatmaster
#3
May29-09, 02:33 PM
P: 504
Here, the absolute value becomes a problem. The absolute value makes the integrand an even function. That means that the final function is symetric about the y axis. What you can do is drop the absolute value, Integrate from 0 to infinity, and multiply the result by two.

flatmaster
#4
May29-09, 02:34 PM
P: 504
Normalization of a Wave Function

Oh wait, you did the integral already. Well, that's what you would do if you were actually doing the math rather than using a table or computer program.
r16
#5
May30-09, 12:40 AM
P: 42
Quote Quote by flatmaster View Post
Here, the absolute value becomes a problem. The absolute value makes the integrand an even function. That means that the final function is symetric about the y axis. What you can do is drop the absolute value, Integrate from 0 to infinity, and multiply the result by two.
i did the integral mathematically exactly the way you said! I wasn't completely sure that this was the correct way to evaluate the absolute value, but I had a feeling it was. I'm a math major in addition to being a physics major =)
flatmaster
#6
May30-09, 07:41 PM
P: 504
This lies within the tips and tricks that are learned slowly and never taught explicitly. When they are taught explicitly, they are often not understood at the time.


Register to reply

Related Discussions
Normalization of wave function in x, y and z Advanced Physics Homework 16
Normalization of a wave function with cosine Advanced Physics Homework 6
Normalization of a wave function question Advanced Physics Homework 7
Normalization of wave functions (hydrogen) Advanced Physics Homework 3
Normalization of a wave function Introductory Physics Homework 1