Hypergeometric Properties


by BCox
Tags: difference, hypergeometric, properties
BCox
BCox is offline
#1
Sep25-09, 04:41 PM
P: 16
Hello:

I need to simplify the following if possible

_2F_1(a,b;c;-x^2) - _2F_1(a+1,b+1;c+1;-x^2)


In fact, a= 1/2 and c=3/2 and b>=1. In other words, the difference above that I am interested in is more specifically

_2F_1(.5, b; 1.5; -x^2) - _2F_1(.5+1, b+1; 1.5+1; -x^2)

I know that
Arctan x = x* _2F_1(1/2, 1 ; 3/2; -x^2)
which is a special case of the first term when b=1.

But I am more interested in reducing the difference at the top for any b>=1. Can I express the difference above as one term (and hopefully not as hypergeometric fct)? And how?
Phys.Org News Partner Mathematics news on Phys.org
Researchers help Boston Marathon organizers plan for 2014 race
'Math detective' analyzes odds for suspicious lottery wins
Pseudo-mathematics and financial charlatanism
g_edgar
g_edgar is offline
#2
Sep26-09, 07:06 AM
P: 608
Using Maple, I get
[latex]
{{}_2F_1(1/2,b;\,3/2;\,-{x}^{2})}-{{}_2F_1(3/2,b+1;\,5/2;\,-{x}^{2})} =
\sum _{k=0}^{\infty }{\frac { \left( -1 \right) ^{k}\Gamma \left( b+k \right) {x}^{2\,k}}{\Gamma \left( b \right) \Gamma \left( k+1 \right) \left( 2\,k+1 \right) }}-\sum _{k=0}^{\infty }3\,{\frac { \left( -1 \right) ^{k}\Gamma \left( 1+b+k \right) {x}^{2\,k}}{\Gamma \left( b+1 \right) \Gamma \left( k+1 \right) \left( 2\,k+3 \right) }}
[/latex]
[latex]
=\sum _{k=0}^{\infty }-{\frac { \left( -1 \right) ^{k}{x}^{2\,k}
\left( 4\,b+6\,k+3 \right) \Gamma \left( b+k \right) }{ \left( 2\,k+
3 \right) \left( 2\,k+1 \right) \Gamma \left( b+1 \right) \Gamma
\left( k \right) }}
=1/15\,{x}^{2} \left( 4\,b+9 \right)
{{}_3F_2(3/2,b+1,2/3\,b+5/2;\,7/2,2/3\,b+3/2;\,-{x}^{2})}
[/latex]
BCox
BCox is offline
#3
Sep26-09, 07:31 AM
P: 16
Quote Quote by g_edgar View Post
Using Maple, I get
[latex]
{{}_2F_1(1/2,b;\,3/2;\,-{x}^{2})}-{{}_2F_1(3/2,b+1;\,5/2;\,-{x}^{2})} =
\sum _{k=0}^{\infty }{\frac { \left( -1 \right) ^{k}\Gamma \left( b+k \right) {x}^{2\,k}}{\Gamma \left( b \right) \Gamma \left( k+1 \right) \left( 2\,k+1 \right) }}-\sum _{k=0}^{\infty }3\,{\frac { \left( -1 \right) ^{k}\Gamma \left( 1+b+k \right) {x}^{2\,k}}{\Gamma \left( b+1 \right) \Gamma \left( k+1 \right) \left( 2\,k+3 \right) }}
[/latex]
[latex]
=\sum _{k=0}^{\infty }-{\frac { \left( -1 \right) ^{k}{x}^{2\,k}
\left( 4\,b+6\,k+3 \right) \Gamma \left( b+k \right) }{ \left( 2\,k+
3 \right) \left( 2\,k+1 \right) \Gamma \left( b+1 \right) \Gamma
\left( k \right) }}
=1/15\,{x}^{2} \left( 4\,b+9 \right)
{{}_3F_2(3/2,b+1,2/3\,b+5/2;\,7/2,2/3\,b+3/2;\,-{x}^{2})}
[/latex]

Thank you for checking in Maple. Hmmm... two things
1. Mathematica software sometimes gives erroneous analytic solutions for integration. Do we fall into that kind of error w. Maple sometimes?
2. If the above is analytically correct, can we represent the solution as exponential or trig functions?

BCox
BCox is offline
#4
Nov30-09, 06:56 PM
P: 16

Hypergeometric Properties


We have the property such as this

Hypergeometric2F1[a,b,c,z] = (1-z)^(c-b-a)*Hypergeometric2F1[c-a,c-b,c,z]

If we wanted to keep the 2nd term of the hypergeometric function constant, what would the r.h.s. be?


Hypergeometric2F1[a,b,c,z] = something * Hypergeometric2F1[something,b,something,z]

What would the somethings be?


Register to reply

Related Discussions
Hypergeometric D.E. Differential Equations 0
Hypergeometric D.E. Calculus & Beyond Homework 0
Hypergeometric Function Calculus 5
Hypergeometric distribution General Math 1
Hypergeometric function Calculus & Beyond Homework 2