Register to reply

Misner-Thorne-Wheeler, p.92, Box 4.1, typo?

by gheremond
Tags: misnerthornewheeler, typo
Share this thread:
Oct26-09, 11:53 AM
P: 6
In Misner-Thorne-Wheeler Gravitation, Chapter 4, Page 92, Box 4.1, at section 4, there is a formula for the contraction of a p-form and a p-vector. Now, it states that the contraction of a p-form basis with a p-vector basis gives the antisymmetrizer symbol, [tex]\left\langle {\omega ^{i_1 } \wedge \ldots \wedge \omega ^{i_p } ,e_{j_1 } \wedge \ldots \wedge e_{j_p } } \right\rangle = \delta ^{i_1 \ldots i_p } _{j_1 \ldots j_p } [/tex] and there is a reference to exercises 3.13 and 4.12. I tried this part many many times and I always find the result to be p! times the antisymmetrizer. I also compared it for the case p=2 using the definition of the symbol from exercise 3.13, still the same result, I get an overall 2. Can anybody please explain what am I doing wrong here?
Phys.Org News Partner Science news on
Scientists develop 'electronic nose' for rapid detection of C. diff infection
Why plants in the office make us more productive
Tesla Motors dealing as states play factory poker
Oct26-09, 05:00 PM
P: 136
No typo. The symbol [tex]\delta^{ij}_{kl}\equiv \delta^{[i}_{k}\delta^{j]}_{l}\equiv \frac{1}{2!}\left(\delta^{i}_{k}\delta^{j}_{l}-\delta^{j}_{k}\delta^{i}_{l}\right)[/tex] (which generalizes to n indices with a 1/n! factor), and basis 1-forms act on basis vectors as [tex]\omega^{i}(e_{j})=\delta^{i}_{j}[/tex].
Oct26-09, 05:24 PM
P: 6
Thanks for the reply. However, if you look on page 88, you will see that the definition for [tex] \delta ^{\alpha \beta } _{\mu \nu } = \delta ^\alpha _\mu \delta ^\beta _\nu - \delta ^\alpha _\nu \delta ^\beta _\mu [/tex] according to MTW does not carry the 1/2! factor that you mention. Furthermore, if you expand the wedge products into tensor products within the contraction symbol, you get [tex]\left\langle {\omega ^\alpha \wedge \omega ^\beta ,e_\mu \wedge e_\nu } \right\rangle = \left\langle {\omega ^\alpha \otimes \omega ^\beta - \omega ^\beta \otimes \omega ^\alpha ,e_\mu \otimes e_\nu - e_\nu \otimes e_\mu } \right\rangle[/tex]

[tex] = \left\langle {\omega ^\alpha \otimes \omega ^\beta ,e_\mu \otimes e_\nu } \right\rangle - \left\langle {\omega ^\alpha \otimes \omega ^\beta ,e_\nu \otimes e_\mu } \right\rangle - \left\langle {\omega ^\beta \otimes \omega ^\alpha ,e_\mu \otimes e_\nu } \right\rangle + \left\langle {\omega ^\beta \otimes \omega ^\alpha ,e_\nu \otimes e_\mu } \right\rangle [/tex]

[tex] = \delta ^\alpha _\mu \delta ^\beta _\nu - \delta ^\alpha _\nu \delta ^\beta _\mu - \delta ^\beta _\mu \delta ^\alpha _\nu + \delta ^\beta _\nu \delta ^\alpha _\mu = 2\left( {\delta ^\alpha _\mu \delta ^\beta _\nu - \delta ^\alpha _\nu \delta ^\beta _\mu } \right) = 2 \delta ^{\alpha \beta } _{\mu \nu } [/tex]

again, using all the conventions of the book up to this point.

Register to reply

Related Discussions
Help finding Kip Thorne web course Astronomy & Astrophysics 3
About the so-call two errors (mistakes) in Misner-Thorne-Wheeler Special & General Relativity 1
Gravitation - Thorne, Misner, Wheeler Science & Math Textbooks 6
Ex 2.1 in Misner Gravitaition Advanced Physics Homework 7
Weinberg vs. Misner, Thorne and Wheeler General Physics 5