Register to reply

Solving Cubic Functions

by TheDominis
Tags: cubic, functions, solving
Share this thread:
Nov19-09, 01:15 PM
P: 2
x3 - 12x + 1 = 0

How does one solve for x?
Phys.Org News Partner Mathematics news on
Heat distributions help researchers to understand curved space
Professor quantifies how 'one thing leads to another'
Team announces construction of a formal computer-verified proof of the Kepler conjecture
Nov19-09, 01:43 PM
P: 21,314
It's not a trivial process. See this Wikipedia article,
especially the Summary about halfway down the page.
Nov20-09, 05:14 AM
Sci Advisor
PF Gold
P: 39,569
Let x= a- b. Then [itex]a^3= (a-b)^3= a^3- 3a^2b+ 3ab^2- b^3[/itex].

Also [itex]3abx= 3ab(a- b)= 3a^2b- 3ab^2[/itex].

So [itex]x^3+ 3abx= a^3- b^3[/itex]. Letting m= 3ab and [itex]n= a^3- b^3[/itex], then x= a-b satisfies [itex]x^3+ mx= n[/itex].

Suppose we know m and n- can we "recover" a and b and so find x?

If m= 3ab, then b= m/3a and [itex]n= a^3- m^3/3^3a^3[/itex]. Multiplying through by [itex]a^3[/itex] we get [itex]na^3= (a^3)^2- m^3/3^3[/itex] which we can think of as a quadratic equation for [itex]a^3[/itex]: [itex](a^3)^2- na^3- m^3/3^3= 0[/itex] and solve by the quadratic formula:
[tex]a^3= \frac{n\pm\sqrt{n^2+ 4\frac{m^3}{m^3}}}{2}[/tex][tex]= \frac{n}{2}\pm\sqrt{\left(\frac{n}{2}\right)^2+ \left(\frac{m}{3}\right)^3}[/tex]
so that
[tex]a= \sqrt[3]{\frac{n}{2}\pm\sqrt{\left(\frac{n}{2}\right)^2+ \left(\frac{m}{3}\right)^3}}}[/tex]

Since [itex]a^3- b^3= n[/itex], [itex]b^3= a^3- n[/itex] so
[tex]b^3= -\frac{n}{2}\pm\sqrt{\left(\frac{n}{2}\right)^2+ \left(\frac{m}{3}\right)^3}[/tex]
[tex]b= -\sqrt[3]{\frac{n}{2}\pm\sqrt{\left(\frac{n}{2}\right)^2+ \left(\frac{m}{3}\right)^3}}}[/tex]
and, of course, x= a- b.

Register to reply

Related Discussions
New solving cubic and quartic equations General Math 1
Solving cubic roots (with imaginary number) Introductory Physics Homework 7
Solving Cubic Equations Calculus & Beyond Homework 2
Solving cubic equation with matrices Precalculus Mathematics Homework 3
Cubic and Quartics, solving methods? General Math 3