Register to reply

Will the Moon escape Earth's orbit in billions of years?

by Richard87
Tags: billions, earth, escape, moon, orbit
Share this thread:
Richard87
#1
Dec21-09, 04:50 PM
P: 30
I've heard that the moon is very slowly moving away from Earth. Will it eventually escape Earth's orbit?
Phys.Org News Partner Astronomy news on Phys.org
The entropy of black holes
Modified theory of dark matter
Gaia discovers its first supernova
mgb_phys
#2
Dec21-09, 05:09 PM
Sci Advisor
HW Helper
P: 8,953
No, the moon will only move away from Earth until it reaches an orbital resonance when the length of the Earth's day and the Moon's month will be equal - that's in about 50bn years.
In theory the moon could then move closer to Earth, but since they are both going to be consumed by the sun before that - it's a bit academic.
SHAMSAEL
#3
Dec24-09, 10:48 AM
P: 7
Quote Quote by mgb_phys View Post
No, the moon will only move away from Earth until it reaches an orbital resonance when the length of the Earth's day and the Moon's month will be equal - that's in about 50bn years.
In theory the moon could then move closer to Earth, but since they are both going to be consumed by the sun before that - it's a bit academic.
It would also be worth mentioning that the 50 billion years it would take for this to happen is longer than the current age of the universe.

fluidistic
#4
Dec24-09, 03:40 PM
PF Gold
fluidistic's Avatar
P: 3,225
Will the Moon escape Earth's orbit in billions of years?

Quote Quote by mgb_phys
In theory the moon could then move closer to Earth, but since they are both going to be consumed by the sun before that - it's a bit academic.
Could you please shed some light on this assertion?
You involved something like "resonance", knowing only resonance in circuits, I think about it as the time where the Moon is the farther from the Earth. But I don't understand why it would then come closer to it, considering tides effects, i.e. some "loss" of gravitational energy in detriment to friction. Feel free to correct me if I said something wrong. My goal is to learn.
mgb_phys
#5
Dec24-09, 03:58 PM
Sci Advisor
HW Helper
P: 8,953
The Earth isn't a perfect sphere, it has bulges around the equator (and the moveable water in the oceans) this means that the moon doesn't simply go around a point. it feels a stronger pull from one side of the earth than the other, ie from the nearer bulge.
The effect of this is to slow the Earth's spin slightly and transfer this angular momentum into the moon, which makes the moon move further away.
Eventually enough of the Earth's spin will have been transferred and the moon will have moved far enough away that it's month (it's orbit around the earth) and the Earth's rotation are the same.
At this point the bulges on each side of Earth are at the same distance and no longer have any effect.

Now any angular momentum that is lost from the system, to interactions with passing comets, or the other planets will decrease the moons distance.

ps. Orbital mechanics , especially tidal effects, are complicated and not very interesting/useful plusit's long time since I had to learn any of this junk, so someone else could probably explain it better !
fluidistic
#6
Dec24-09, 05:05 PM
PF Gold
fluidistic's Avatar
P: 3,225
Quote Quote by mgb_phys View Post
The Earth isn't a perfect sphere, it has bulges around the equator (and the moveable water in the oceans) this means that the moon doesn't simply go around a point. it feels a stronger pull from one side of the earth than the other, ie from the nearer bulge.
The effect of this is to slow the Earth's spin slightly and transfer this angular momentum into the moon, which makes the moon move further away.
Eventually enough of the Earth's spin will have been transferred and the moon will have moved far enough away that it's month (it's orbit around the earth) and the Earth's rotation are the same.
At this point the bulges on each side of Earth are at the same distance and no longer have any effect.

Now any angular momentum that is lost from the system, to interactions with passing comets, or the other planets will decrease the moons distance.

ps. Orbital mechanics , especially tidal effects, are complicated and not very interesting/useful plusit's long time since I had to learn any of this junk, so someone else could probably explain it better !
Thank you very much. I should sharpen a bit more my English. I've understood something, I just hope it's what you mean.
By the way, it might look like something uninteresting to you, but I assure you that not knowing what really happens is frustrating and makes your curiosity growing! So I don't find this uninteresting.
mgb_phys
#7
Dec24-09, 05:08 PM
Sci Advisor
HW Helper
P: 8,953
Quote Quote by fluidistic View Post
By the way, it might look like something uninteresting to you, but I assure you that not knowing what really happens is frustrating and makes your curiosity growing!
The concept is interesting, it's just all the equations you have to learn, and the complications of the reference frames and which angles are measured from where, and so on that is tedious.

The wiki article on lunar orbit is a good starting point.
Janus
#8
Dec24-09, 06:28 PM
Emeritus
Sci Advisor
PF Gold
Janus's Avatar
P: 2,361
Quote Quote by fluidistic View Post
Could you please shed some light on this assertion?
You involved something like "resonance", knowing only resonance in circuits, I think about it as the time where the Moon is the farther from the Earth. But I don't understand why it would then come closer to it, considering tides effects, i.e. some "loss" of gravitational energy in detriment to friction. Feel free to correct me if I said something wrong. My goal is to learn.
It is tidal interaction that causes the Moon to recede. The Moon raises tidal bulges on the Earth. Friction between the bulges and the rotating Earth drag the tidal bulges out of alignment with the Moon. The out of line bulges pull forward on the Moon, giving it more energy which lifts it into a higher orbit. The Earth slows its rotation in response.

This all happens because the Earth rotates faster than the Moon orbits. So when the Earth slows enough to match its rotation rate to the Moon's orbit, the situation stabilizes.

However, the Sun still raises tidal bulges on the Earth, which continue to slow the Earth's rotation. Now the Earth is rotating slower than the Moon orbits. Again, friction between the lunar tidal bulges and the Earth come into play. This time however, the bulges lag behind the Moon, pulling it backward, and into a lower orbit.

This interplay between Solar and Lunar tides will continue forcing the Moon into a lower and lower orbit.
fluidistic
#9
Dec24-09, 07:21 PM
PF Gold
fluidistic's Avatar
P: 3,225
Quote Quote by Janus View Post
It is tidal interaction that causes the Moon to recede. The Moon raises tidal bulges on the Earth. Friction between the bulges and the rotating Earth drag the tidal bulges out of alignment with the Moon. The out of line bulges pull forward on the Moon, giving it more energy which lifts it into a higher orbit. The Earth slows its rotation in response.

This all happens because the Earth rotates faster than the Moon orbits. So when the Earth slows enough to match its rotation rate to the Moon's orbit, the situation stabilizes.

However, the Sun still raises tidal bulges on the Earth, which continue to slow the Earth's rotation. Now the Earth is rotating slower than the Moon orbits. Again, friction between the lunar tidal bulges and the Earth come into play. This time however, the bulges lag behind the Moon, pulling it backward, and into a lower orbit.

This interplay between Solar and Lunar tides will continue forcing the Moon into a lower and lower orbit.
Thanks. Very nice explanation, I get it.


Register to reply

Related Discussions
Find mass of mars given period of moon orbit and radius of orbit Introductory Physics Homework 1
Escape Velocity and Earth's Gravity Astronomy & Astrophysics 2
Did the core of the Earth collide with the Earth billions of years ago? Earth 10
Billions of years later on Biology 7
Venus possibly habitable for billions of years: Newscientist.com Astronomy & Astrophysics 12