Register to reply

The point on the bottom of a rolling object is instantaneously at rest. Acceleration?

Share this thread:
jumbogala
#1
Feb25-10, 02:24 PM
P: 400
1. The problem statement, all variables and given/known data
The point on the bottom of a rolling object is instantaneously at rest (v = 0).

What is the acceleration of that point?


2. Relevant equations



3. The attempt at a solution
The formula given is a = [tex]\alpha[/tex]r, and r = 0. So I'm guessing it's zero as well, although that doesn't seem to make logical sense. Can anyone confirm that the answer is indeed zero?

(By the way, the equation for v = [tex]\omega[/tex]r, and in this case r = 0. So r has to be zero for the equation for a as well.
Phys.Org News Partner Science news on Phys.org
Hoverbike drone project for air transport takes off
Earlier Stone Age artifacts found in Northern Cape of South Africa
Study reveals new characteristics of complex oxide surfaces
kuruman
#2
Feb25-10, 02:30 PM
HW Helper
PF Gold
kuruman's Avatar
P: 3,443
Confirmed instantaneously, zero. The entire wheel accelerates instantaneously relative to the point of contact. The point of contact is the only point on the wheel that is at rest with respect to an inertial frame, namely the floor.
Doc Al
#3
Feb25-10, 02:36 PM
Mentor
Doc Al's Avatar
P: 41,304
Just because the point of contact is instantaneously at rest does not mean its acceleration is zero.

jumbogala
#4
Feb25-10, 02:52 PM
P: 400
The point on the bottom of a rolling object is instantaneously at rest. Acceleration?

Seems like I'm getting conflicting answers...

If that's wrong, then how does the formula a = αr work in this case? I know in general that formula is useful for "converting" angular acceleration to linear acceleration, but how does it pertain to the bottom of a rolling object?
Doc Al
#5
Feb25-10, 03:06 PM
Mentor
Doc Al's Avatar
P: 41,304
Quote Quote by jumbogala View Post
If that's wrong, then how does the formula a = αr work in this case? I know in general that formula is useful for "converting" angular acceleration to linear acceleration, but how does it pertain to the bottom of a rolling object?
I'd say that that formula won't help much here. It would tell you the tangential acceleration of some point with respect to the axis, but what's the angular acceleration in this case? Either way, it doesn't give the acceleration of the axis itself.

To find the acceleration of a point on the rim, consider the motion of that point with respect to the center of mass.
jumbogala
#6
Feb25-10, 03:13 PM
P: 400
Why the center of mass? Isn't the axis in this case the bottom of the wheel?
Doc Al
#7
Feb25-10, 03:31 PM
Mentor
Doc Al's Avatar
P: 41,304
Quote Quote by jumbogala View Post
Why the center of mass?
For one thing, we know its acceleration. Presumably the object is rolling at constant speed, so the acceleration of the center of mass is zero.

Isn't the axis in this case the bottom of the wheel?
Yes, the bottom of the wheel is the instantaneous axis of rotation. But we are trying to find the acceleration of that point, not of some other point about that axis.

And you didn't answer my question: What's the angular acceleration of this rolling object?
kuruman
#8
Feb25-10, 06:37 PM
HW Helper
PF Gold
kuruman's Avatar
P: 3,443
Quote Quote by Doc Al View Post
Just because the point of contact is instantaneously at rest does not mean its acceleration is zero.
I agree, but in this case I think it does. The problem states
The point on the bottom of a rolling object is instantaneously at rest (v = 0).
It is implicit in that statement, that the reference frame, with respect to which the velocity is zero, is the inertial frame of the surface on which the object rolls. There is no other frame in which v = 0. The center of mass may do whatever it wants, but in the inertial frame of the surface (instantaneously), the acceleration of the point of contact is zero and its velocity is also zero.
Doc Al
#9
Feb25-10, 06:45 PM
Mentor
Doc Al's Avatar
P: 41,304
Quote Quote by kuruman View Post
It is implicit in that statement, that the reference frame, with respect to which the velocity is zero, is the inertial frame of the surface on which the object rolls. There is no other frame in which v = 0. The center of mass may do whatever it wants, but in the inertial frame of the surface (instantaneously), the acceleration of the point of contact is zero and its velocity is also zero.
(1) If the velocity and acceleration are both zero, how does it move?
(2) The acceleration is the same in any inertial frame, including the one in which the center of mass is at rest. Of course, from the center of mass frame it is easy to see that that point of contact is accelerating.
vela
#10
Feb25-10, 07:46 PM
Emeritus
Sci Advisor
HW Helper
Thanks
PF Gold
P: 11,673
Quote Quote by kuruman View Post
But in the inertial frame of the surface (instantaneously), the acceleration of the point of contact is zero and its velocity is also zero.
I would say one component of the acceleration is zero, and I think this is true regardless of whether the center of mass is accelerating or not.
Doc Al
#11
Feb25-10, 07:49 PM
Mentor
Doc Al's Avatar
P: 41,304
Quote Quote by vela View Post
I would say one component of the acceleration is zero, and I think this is true regardless of whether the center of mass is accelerating or not.
Absolutely.
kuruman
#12
Feb25-10, 08:29 PM
HW Helper
PF Gold
kuruman's Avatar
P: 3,443
Quote Quote by Doc Al View Post
(1) If the velocity and acceleration are both zero, how does it move?
(2) The acceleration is the same in any inertial frame, including the one in which the center of mass is at rest. Of course, from the center of mass frame it is easy to see that that point of contact is accelerating.
Of course. I set my priorities wrong when thinking about this.


Register to reply

Related Discussions
You dig a hole half way to the center of the earth. You lower an object to the bottom Introductory Physics Homework 18
Top and bottom of a swinging object Introductory Physics Homework 3
2 balls, one rolling, one sliding down the same ramp. Which is faster at the bottom? Introductory Physics Homework 1
Why is the non headon collision between an object with momentum and an object at rest Classical Physics 6
A Sphere rolling down an incline. Find the speed at the bottom Introductory Physics Homework 2