# Simple Number Theory Proof, Again!

by nastygoalie89
Tags: number theory, proofs, simple
 P: 17 Alright, having problems with this question too. It seems to be the same type of number theory problem, which is the problem. 1. The problem statement, all variables and given/known data Prove "The square of any integer has the form 4k or 4k+1 for some integer k. 2. Relevant equations definition of even= 2k definition of odd= 2k+1 3. The attempt at a solution Basically I have: Case 1. 2k(2k) = 4k Case 2. 2k+1(2k+1) = 4k2+4k+1 = 4k+1(k+1) Not sure if it's correct. Do I need to use different indices? I feel I am missing something. Thanks for any help!
Mentor
P: 19,802
 Quote by nastygoalie89 Alright, having problems with this question too. It seems to be the same type of number theory problem, which is the problem. 1. The problem statement, all variables and given/known data Prove "The square of any integer has the form 4k or 4k+1 for some integer k. 2. Relevant equations definition of even= 2k definition of odd= 2k+1 3. The attempt at a solution Basically I have: Case 1. 2k(2k) = 4k Case 2. 2k+1(2k+1) = 4k2+4k+1 = 4k+1(k+1) Not sure if it's correct. Do I need to use different indices? I feel I am missing something. Thanks for any help!
For case 1, (2k)(2k) != 4k
For case 2, you need parentheses.
(2k + 1)(2k + 1) = 4k2 + 4k + 1 != 4k + 1(k + 1)

Your last expression above is equal to 5k + 1, which is different from (2k + 1)(2k + 1).
 P: 439 You've expanded it yet you factorised it? it will be taking you back to what you got initially. you should have changed your $$4m^{2}+4m+1$$ into $$4(m^{2}+m)+1$$ and explain that it is similar to the form 4k+1 .
P: 6

## Simple Number Theory Proof, Again!

Even though this is my first post on Physics Forums and this was done a year ago, I'm going to tell everyone you've made it way too complicated. I'm a pretty new mathematician, and I feel this isn't in the spirit of a proof, but it still works.

Take the case n^2.
if n==0 (mod 4), n^2 will also be congruent to 0 modulo 4. Check.
if n==1, 1^2 will also be congruent to 1 modulo 4. Check.
if n==2, 2^2=4 and 4 modulo 4 == 0. Check.
if n==3, 3^3=9, 9==1 modulo 4. Check.

That's all the cases.
 PF Patron Sci Advisor Thanks Emeritus P: 38,430 The only difference is that you have "hidden" the complications under the name "mod". That's fine if the person knows about modular arithmetic but the proof originally given is much simpler in that it does not use modular aritymetic.

 Related Discussions Precalculus Mathematics Homework 1 Linear & Abstract Algebra 2 Linear & Abstract Algebra 5 Calculus & Beyond Homework 0 Calculus & Beyond Homework 7