Register to reply

Recurrence Relation

by pupeye11
Tags: recurrence, relation
Share this thread:
pupeye11
#1
Jun15-10, 08:51 PM
P: 100
1. The problem statement, all variables and given/known data

The sequence [tex]f_n[/tex] is defined by [tex]f_0=1, f_1=2[/tex] and [tex]f_n=-2f_{n-1}+15f_{n-2}[/tex] when [tex]n \geq 2[/tex]. Let

[tex]
F(x)= \sum_{n \geq 2}f_nx^n
[/tex]

be the generating function for the sequence [tex]f_0,f_1,...,f_n,...[/tex]

Find polynomials P(x) and Q(x) such that

[tex]
F(x)=\frac{P(x)}{Q(x)}
[/tex]

3. The attempt at a solution

[tex]
f_n+2f_{n-1}-15f_{n-2}=0
[/tex]

So since we know that [tex]F(x)=f_0+f_1x+f_2x^2+...+f_nx^n+...[/tex]

[tex]
F(x)=f_0+f_1x+f_2x^2+...+f_nx^n+...
[/tex]

[tex]
2xF(x)=2f_0x+2f_1x^2+...+2f_{n-1}x^n+...
[/tex]

[tex]
-15x^2F(x)= -15f_0x^2-...-15f_{n-2}x^n-...
[/tex]

Summing these I get

[tex]
(1+2x-15x^2)F(x)=f_0+(f_1+2f_0)x+(f_2+2f_1-15f_0)x^2+...+(f_n+2f_{n-1}-15f_{n-2})x^n
[/tex]

After some algebra and substituting [tex]f_0=1, f_1=2[/tex] I get

[tex]
F(x)=\frac{1+4x}{1+2x-15x^2}
[/tex]

So

[tex]
P(x)=1+4x
[/tex]

and

[tex]
Q(x)=1+2x-15x^2
[/tex]

Is this correct?
Phys.Org News Partner Science news on Phys.org
Physical constant is constant even in strong gravitational fields
Montreal VR headset team turns to crowdfunding for Totem
Researchers study vital 'on/off switches' that control when bacteria turn deadly
lanedance
#2
Jun21-10, 06:59 AM
HW Helper
P: 3,307
looks reasonable to me, you can always check by diferntiating you function a few times


Register to reply

Related Discussions
Recurrence Relation Calculus & Beyond Homework 0
Recurrence Relation Help Calculus & Beyond Homework 5
Recurrence relation General Math 7
Recurrence Relation General Math 11
Recurrence Relation General Math 5