Why do people even teach quantum mechanics without braket notation?


by Simfish
Tags: braket, mechanics, notation, people, quantum, teach
Simfish
Simfish is offline
#1
Dec24-10, 01:55 AM
PF Gold
Simfish's Avatar
P: 828
To me, braket notation just seems much easier and more intuitive than the approach from Griffiths. And yes, I learned QM through a text that used braket notation.
Phys.Org News Partner Physics news on Phys.org
The hemihelix: Scientists discover a new shape using rubber bands (w/ video)
Mapping the road to quantum gravity
Chameleon crystals could enable active camouflage (w/ video)
Pengwuino
Pengwuino is offline
#2
Dec24-10, 02:25 AM
PF Gold
Pengwuino's Avatar
P: 7,125
Quote Quote by Simfish View Post
To me, braket notation just seems much easier and more intuitive than the approach from Griffiths. And yes, I learned QM through a text that used braket notation.
I used Griffiths and I wonder why people use bra-ket notation :)
The_Duck
The_Duck is offline
#3
Dec24-10, 03:16 AM
P: 796
For Griffiths you basically only need calculus. I think to get comfortable with bras and kets you need to spend some time on linear algebra.

Simfish
Simfish is offline
#4
Dec24-10, 03:25 AM
PF Gold
Simfish's Avatar
P: 828

Why do people even teach quantum mechanics without braket notation?


^That's a good point, but I'd expect that the vast majority of undergrads would have had linear algebra by the time they take quantum
George Jones
George Jones is offline
#5
Dec24-10, 03:42 AM
Mentor
George Jones's Avatar
P: 6,044
Quote Quote by Simfish View Post
To me, braket notation just seems much easier and more intuitive than the approach from Griffiths. And yes, I learned QM through a text that used braket notation.
Does everyone think and learn in the same ways that you do?
Quote Quote by Roger Penrose
I recall that when I was about to enter university to study mathematics I had expected to find that the others, who would be my mathematical colleagues, would think more-or-less as I did. It had been my experience at school that my classmates seemed to think rather differently than myself, which I had found somewhat disconcerting. 'Now', I had though to myself excitedly, 'I shall find colleagues with whom I can much readily communicate! Some will think more effectively than I, and some less; but all will share my particular wavelength of thought.' How wrong I was! I believe that I encountered more differences in modes of thinking that I had ever experienced before!
It is particular apparent to anyone who teaches that different people think and learn in different ways.
Simfish
Simfish is offline
#6
Dec24-10, 04:00 AM
PF Gold
Simfish's Avatar
P: 828
^Okay true, but I'd at least like to know why people prefer QM without braket notation? Are there working physicists who do?

There certainly is a reason why all the grad lvl quantum texts use braket notation.
Kurdt
Kurdt is offline
#7
Dec24-10, 06:15 AM
Emeritus
Sci Advisor
PF Gold
P: 4,975
One of the major problems students have with quantum mechanics is that it is conceptually difficult. Adding the extra abstraction of bra-ket notation at the beginning may hinder the learning process. It therefore seems logical to me to stick with a notation that is very familiar.

Besides it depends on the aims of the course. Some are taught from the historical perspective rather than the approach laid out in Sakurai's text for example, with the benefit of hindsight.

I guess what I'm saying in summary is that it eases students into QM before bombarding them with more abstarction than they need.
tom.stoer
tom.stoer is offline
#8
Dec24-10, 07:58 AM
Sci Advisor
P: 5,307
Bra-ket notation is rather abstract, that means an extra abstraction on top of QM. But in addition sometimes an abstract bra-ket Hilbert space is not sufficient; instead one has to deal with functions (depending on x, k, ...) in order to study the probability density, scalar product, convergence, asymptotic behaviour, ...

So essentially we need both.
Simfish
Simfish is offline
#9
Dec24-10, 12:46 PM
PF Gold
Simfish's Avatar
P: 828
Oh okay.

Are there problems where braket notation is a lot messier than non-braket notation?

It seems that braket notation makes some problems A LOT cleaner, which in turn, makes them easier for me to understand. Here's an example (with a simple harmonic oscillator): http://www.scribd.com/doc/45874729/SHO-3. The matrix method and "doing the integrals in x-space" method are FAR messier than the braket notation method.
tom.stoer
tom.stoer is offline
#10
Dec25-10, 04:34 AM
Sci Advisor
P: 5,307
If you try to solve am simple problem like eigenstates |k> of the momentum operator p you immediately face the problem of normalization and inner product. If x is a compact variable [0,L] you find

[tex]\langle k^\prime | k\rangle = 2\pi\delta_{kk^\prime}[/tex]

but for x defined on the entire real line you get

[tex]\langle k^\prime | k\rangle = 2\pi\delta(k-k^\prime)[/tex]

In both cases you have

[tex]\hat{p}| k\rangle = k| k\rangle[/tex]

but the space of kets is different.

In the first case it's related to the L²[0,L] Hilbert space of square integrable functions, but in the second case you have to discuss generalized functions (distributions), Sobolev spaces and all that. You are not able to do this based on an abstract bra-ket notation w/o ever writing down (and defining!) the wave function

[tex]\psi_k(x) = \langle x|k\rangle[/tex]

and the integrals.
DrDu
DrDu is offline
#11
Dec25-10, 04:47 AM
Sci Advisor
P: 3,378
It is quite nasty to represent anti-linear operations like time inversion in bracket formalism.
Fredrik
Fredrik is offline
#12
Dec25-10, 07:12 AM
Emeritus
Sci Advisor
PF Gold
Fredrik's Avatar
P: 9,018
Quote Quote by Simfish View Post
It seems that braket notation makes some problems A LOT cleaner, which in turn, makes them easier for me to understand. Here's an example (with a simple harmonic oscillator): http://www.scribd.com/doc/45874729/SHO-3. The matrix method and "doing the integrals in x-space" method are FAR messier than the braket notation method.
I'm not going to read all that, but the appearence of all those integrals in the messy calculation suggests to me that the difference between it and the "bra-ket" calculation is that the messy one uses the explicit definition of the inner product on L2(ℝ3) (over and over, without ever using the result that it is an inner product), while the "bra-ket" calculation pays no attention to which inner product we're dealing with. You don't need bra-ket notation to do that.
cbetanco
cbetanco is offline
#13
Dec27-10, 02:01 PM
P: 135
Quote Quote by Simfish View Post
To me, braket notation just seems much easier and more intuitive than the approach from Griffiths. And yes, I learned QM through a text that used braket notation.
Physicists use bra-ket notation and look at state vectors, chemists only know of wave functions (projecting the state vector onto the position basis). So you don't need bra-ket notation if you are doing chemistry!
eaglelake
eaglelake is offline
#14
Dec27-10, 08:00 PM
P: 128
Quote Quote by Simfish View Post
To me, braket notation just seems much easier and more intuitive than the approach from Griffiths. And yes, I learned QM through a text that used braket notation.
Quantum mechanics is a theory of linear operators. So, it helps to take a course in linear algebra before beginning quantum mechanics. The great thing about Dirac's bra-ket notation is that it was invented for quantum mechanics, so the calculations are most convenient when using it. You can use it with matrices or differential operators, with linear vector spaces or with linear function spaces. The equations always look the same. For example, calculations for any two-state system begin in the same way. It doesn't matter whether we are investigating the double-slit experiment or spin ½ particles, the bra-ket notation, "tells us what to do". Combined with a few postulates, you learn to do all the calculations the same way. However, in a function space, you ultimately have to solve differential equations and evaluate integrals. But, the bra-ket notation provides us with a consistent approach to most problems in quantum mechanics. Obviously, I recommend it to anyone studying quantum mechanics.
Fredrik
Fredrik is offline
#15
Dec27-10, 08:45 PM
Emeritus
Sci Advisor
PF Gold
Fredrik's Avatar
P: 9,018
It's not the bra-ket notation that saves you from having to do integrals. It's the fact that

[tex]\langle f,g\rangle=\int_{-\infty}^\infty f(x)^*g(x)dx[/tex]

defines an inner product. If we just use that, we rarely have to do any integrals.

Bra-ket notation is defined by the following: Write |f> instead of f. This turns <f,g> into < |f>,|g> >. (This is still the inner product of two vectors, now written as kets). Let <f| be the linear functional defined by <f||g>=< |f>,|g> > for all |g>. Write <f|g> instead of <f||g>, because the extra vertical line is annoying. Define the product of a ket and a bra by (|f><g|)|h>=<g|h>|f>. Allow expressions of the form c|f> where c is a complex number to be written as |f>c. Note that this means that we can write |f><g|h> without causing confusion.

This simplifies some things, but it doesn't avoid any integrals.
Edgardo
Edgardo is offline
#16
Dec29-10, 08:25 PM
P: 685
The article Mathematical surprises and Dirac's formalism in quantum mechanics by François Gieres explains why Dirac's notation can cause mathematical problems (links: arxiv and iopscience).
See chapter 4.2.

Chapter 5 mentions literature that differ in the mathematical rigor.
nismaratwork
nismaratwork is offline
#17
Dec30-10, 06:23 AM
P: 2,281
I think that it's worth remembering who Dirac was... not a man who made this system for anyone's use but his own. That it became widely adopted is more a function of the times, and what he contributed to QM. It's hardly perfect, as others have noted, nor can any single formal notation fill all needs. As someone trying to take the Linear Algebra->Bra-Ket move, I find it to be just... much more of the same. Plenty of advantages, and some notable problems.

I think a better question might be why anyone should be wedded to one notation when it's very specific in its application to QM.

Or, to put it another way... would you learn shorthand first, or the language that shorthand is based on? Generally most theories of how people learn are based on building upon previous ideas... you would offer an abstraction of an abstraction of an abstraction... without the background? Seems like the ultimate preparation for "shut up and calculate" to me.


Register to reply

Related Discussions
Quick Braket notation question Quantum Physics 3
Question about Braket notation Quantum Physics 8
Commutation of 2 operators using braket notation? Advanced Physics Homework 5
Linear algebra question (using braket notation). Advanced Physics Homework 5
Quantum mechanics in DIRAC notation Introductory Physics Homework 9