Convergent series with non-negative terms, a counter-example with negative terms


by Crossfader
Tags: convergent, counterexample, negative, nonnegative, series, terms
Crossfader
Crossfader is offline
#1
Aug23-11, 12:55 PM
P: 2
1. The problem statement, all variables and given/known data

The terms of convergent series [itex]\sum_{n=1}^\infty[/itex][itex]a_n[/itex] are non-negative. Let [itex]m_n[/itex] = max{[itex]a_n, a_{n+1}[/itex]}, [itex]n = 1,2,...[/itex]

Prove that [itex]\sum_{n=1}^\infty[/itex][itex]m_n[/itex] converges.

Show with a counter-example that the claim above doesn't necessarily hold if the assumption [itex]a_n[/itex][itex]\geq[/itex]0 for all n[itex]\geq[/itex]1 is dropped.


2. The attempt at a solution

I think I've solved the first claim using a theorem which claims if series converges then its partial sum converges as well. This holds assuming that I understood right the meaning of [itex]m_n[/itex]=max{[itex]a_n, a_{n+1}[/itex]}

I'm stuck with another one, frankly saying I couldn't find any counter-example.
Phys.Org News Partner Science news on Phys.org
Better thermal-imaging lens from waste sulfur
Hackathon team's GoogolPlex gives Siri extra powers
Bright points in Sun's atmosphere mark patterns deep in its interior
Mark44
Mark44 is offline
#2
Aug23-11, 01:29 PM
Mentor
P: 20,984
Quote Quote by Crossfader View Post
1. The problem statement, all variables and given/known data

The terms of convergent series [itex]\sum_{n=1}^\infty[/itex][itex]a_n[/itex] are non-negative. Let [itex]m_n[/itex] = max{[itex]a_n, a_{n+1}[/itex]}, [itex]n = 1,2,...[/itex]

Prove that [itex]\sum_{n=1}^\infty[/itex][itex]m_n[/itex] converges.

Show with a counter-example that the claim above doesn't necessarily hold if the assumption [itex]a_n[/itex][itex]\geq[/itex]0 for all n[itex]\geq[/itex]1 is dropped.


2. The attempt at a solution

I think I've solved the first claim using a theorem which claims if series converges then its partial sum converges as well. This holds assuming that I understood right the meaning of [itex]m_n[/itex]=max{[itex]a_n, a_{n+1}[/itex]}

I'm stuck with another one, frankly saying I couldn't find any counter-example.
How can a series fail to converge? One way is if the partial sums get larger and larger without bound (or more and more negative). Is there another way that a series can diverge?


Register to reply

Related Discussions
QFT Counter Terms example calculation? Quantum Physics 16
Is there a reason the Ampere is defined in terms of negative charge per unit time? Classical Physics 7
Are all quadratic terms in gauge fields necessarily mass terms? Quantum Physics 0
charge density in terms of (r,θ) but need it in terms of the vector r' Advanced Physics Homework 8
passive sign convention (negative watts, and negative current confusion) Advanced Physics Homework 7