Register to reply

Practical astrophysics.

by Lavabug
Tags: astrophysics, practical
Share this thread:
Lavabug
#1
Sep1-11, 04:50 AM
P: 880
Hi, just a lowly undergrad hoping for some of the wisdom here to rub off. I have always had a keen interest in astrophysics and have considered giving a colder look at long-term prospects for an academic path in theory/computation in said field. Long-term stability looks as fuzzy and insecure as ever and I've been thinking of other paths that may improve my chances without having to give up on academia entirely (don't live in the US btw, but I'm open to the EU & Canada possibly, assuming I don't renew my US residency status).

What about a more "instrumentation"-oriented career path in astrophysics? As in developing particle detectors/telescopes for ground and space observatories, ground control for space probes, etc. Is there a well-worn road to this type of work for physicists or is this more tailored for HEP, electronic & aerospace engineers? Do physicists that do this kind of work generally get to lecture university students and publish in journals as part of the job? Do you also get to work/publish anything theory-related?

Are the long-term prospects in this area better or worse than my (possibly naive) interest in phenomenological astrophysics (cosmic rays, solar physics, etc)?

Also, I will have to choose one of the following two electives in the spring semester this year, which one should I take given my situation? :

"astrophysical fluid dynamics" (appealing theory-wise, and an easy grade-booster according to other students)

or

"acquisition-transmission of signals & images" (brand new course on electronic communications, may involve some programming which I am weak in, but will probably be beneficial).

Any help is greatly appreciated.
Phys.Org News Partner Science news on Phys.org
Hoverbike drone project for air transport takes off
Earlier Stone Age artifacts found in Northern Cape of South Africa
Study reveals new characteristics of complex oxide surfaces
twofish-quant
#2
Sep5-11, 12:54 AM
P: 6,863
Quote Quote by Lavabug View Post
Hi, just a lowly undergrad hoping for some of the wisdom here to rub off. I have always had a keen interest in astrophysics and have considered giving a colder look at long-term prospects for an academic path in theory/computation in said field.
Impossible to say. Long term academic prospects depend largely on how much government money gets pumped into a field, and no one has a crystal ball that can tell you what the US Federal Budget is going to look in 2015 much less 2020.

Just to give you an idea of how hard/impossible the question you are asking is. Can you tell me who is going to win the 2012 Presidential election and the likely breakdown of Congress after the election? If you can't then predicting academic trends to 2020 is pretty much impossible.

For that matter, imagine we are having this conversation in 1990. Could you predict the role of the internet, the dot-com boom, the 9/11 attacks, and the war in Iraq? Probably not.

I've been thinking of other paths that may improve my chances without having to give up on academia entirely (don't live in the US btw, but I'm open to the EU & Canada possibly, assuming I don't renew my US residency status).
My prediction is that someone is going to pull a "Steve Jobs" and do for physics education what Apple did to tablet computing and the music industry. All of the pieces are there, someone is going to put them together. I don't know who, and I don't know how, and I don't know when, but I can smell enough gasoline to know that something is going to catch fire if there is a spark.

Are the long-term prospects in this area better or worse than my (possibly naive) interest in phenomenological astrophysics (cosmic rays, solar physics, etc)?
No clue. Crystal ball is not working. Also there is a problem with crystal ball. Suppose I tell you to take theory. Then everyone will take theory, and you'll have an glut of theorists. Well, suppose I tell you that there is going to be a glut of theorists, and that you should take experimental courses. Then everyone does that and in a few years you end up with a glut of experimentalists and no theorists.

So my advice is to consult the I-ching. Flip three coins, and then look up the solution in the I-ching. You'll end up with something that is random, but that's good. If people did this then you'll end up with half of the people going theory, half with experimentalist, and no glut.

Also consulting a professional psychic might be useful. It turns out that professional psychics have no particular insight into the future, but they can often figure out what is the answer you want and give it do you, and in any case, if they read tarot cards and tell you to do something, you stop worrying about it. I also trust professional psychics more than I do astrophysics professors when giving career forecasts, because they have fewer conflicts of interest.

Also, I will have to choose one of the following two electives in the spring semester this year, which one should I take given my situation?
One thing that has been really useful for me is to take random courses and read random books. For example, open up your course catalog, pick something totally random, and go with it. For example, you might take "Introduction to cattle ranching." Now I have no clue what cattle ranching has to do with astrophysics, and it's possible that cattle ranching is totally useless to astrophysics, but if it turns out that there is a useful connection, you'll be the first and only one in the entire world to see it.
Lavabug
#3
Sep5-11, 05:22 AM
P: 880
Firstly, thanks for your reply as I always find them insightful and humorous.

However I don't think my question was as far-fetched and as general as asking for a future forecast. What I want to know if its advisable to take a more practical, experimental approach in my career path. I mainly want to know if there are generally more positions available as an instrumentation expert than as a straight up theoretician/computationalist. What kind of ratio of tenured instrument professionals:theoreticians do you find at universities and research institutes, for example? Or is this question meaningless? Does it depend on the institution?

My university's masters program gives me the option of getting the degree with either inclination: instrumentation or theory/computation (you can also choose to have no declared inclination and take courses from both). From what I've seen, at my institution there are a larger number of people who work on instrumentation (though the joints with ESA and the large amount of observatories where I live (Canary Islands) may have something to do with it).

My elective course catalog for my junior year is limited to the choices I mentioned (and a new course on renewable energies which doesn't appeal to me). I just wanted to know if it was more useful (even for the astrophysics-inclined) to take a more practical course that makes use of programming and signal processing than a strictly pencil-and-paper course that allegedly isn't going to "force me to learn as much" (despite that I find fluid mechanics a lot more interesting).

Thanks again.

twofish-quant
#4
Sep5-11, 09:36 PM
P: 6,863
Practical astrophysics.

Quote Quote by Lavabug View Post
I mainly want to know if there are generally more positions available as an instrumentation expert than as a straight up theoretician/computationalist.
I think that for instrumentation versus computationally heavy theory, the number of positions both in academia and in industry are comparable. In many ways computational theory is an area in which the computer is another instrument. In astronomy, instrumentation people work on hardware and computational theorists work on software, and the numbers are roughly comparable.

What kind of ratio of tenured instrument professionals:theoreticians do you find at universities and research institutes, for example? Or is this question meaningless? Does it depend on the institution?
That's a different question. One thing that isn't appreciated is that universities and research institutes hire rather large numbers of staff are non-tenured. If you go into a telescope, you'll find that most people that work on telescopes are non-tenured research scientists or technicians. The same holds true for computer centers.

One thing about computational theory and instrumentation is that the job prospects are considerably better than "pencil and paper" theory because of the large number of non-tenured staff positions.

From what I've seen, at my institution there are a larger number of people who work on instrumentation (though the joints with ESA and the large amount of observatories where I live (Canary Islands) may have something to do with it).
Yup. If you worked at a big supercomputing center, (NCSA or UCSD) then things would be different. Also, Europe has had a lot different priorities than the US.

One reason astrophysics computation is important in the US (as well in China and Russia) has to do with making sure that the bombs still work. People have come to the conclusion that it would be better to ban nuclear testing worldwide, because if you ban nuclear testing, then it makes it harder for Iran, Pakistan, and North Korea to get the practical experience in building nuclear weapons. Once you can no longer blow up bombs, then you have to test the weapons via simulation, which means that the people that run things make sure that a lot of money goes into supercomputing, because it would be a really bummer if there is a major international crisis, and North Korea or Iran is willing to gamble that American H-bombs just don't work.

So in the US, there are a lot of jobs in defense. This matters even if you can't or don't want to build H-bombs, because anyone that gets hired at Los Alamos, is one less person looking for a non-defense related job. Also, I have a suspicion that people that know how to make a telescope that looks up, also get jobs building telescopes that look down.

My elective course catalog for my junior year is limited to the choices I mentioned (and a new course on renewable energies which doesn't appeal to me). I just wanted to know if it was more useful (even for the astrophysics-inclined) to take a more practical course that makes use of programming and signal processing than a strictly pencil-and-paper course that allegedly isn't going to "force me to learn as much" (despite that I find fluid mechanics a lot more interesting).
One other suggestion is to take the *opposite* of what you are interested in. If you are interested in computation theory, it would make more sense if you took a course on instrumentation, and if you are interested in instrumentation, it makes more sense if you took a course on theory. To be a competent theorist, you need to know basic instrumentation (otherwise you end up making theories that are untestable and hence useless) and to be a competent experimentalist, you need to know basic theory (otherwise, you have no idea what you are looking for).

The reason for this is that if you go instrumentation, you are going to be spending years and years doing it, whereas if you go theory, you are going to be spending years and years doing that. Your exposure to the "other side" is going to be limited, and it may be a good idea to get that now.

Also, it will help with grad school admissions to be less specialized than more specialized.
Lavabug
#5
Sep7-11, 02:29 AM
P: 880
Thanks, I'll be keeping all this in mind.
MaxManus
#6
Sep7-11, 08:52 AM
P: 297
Quote Quote by twofish-quant View Post
My prediction is that someone is going to pull a "Steve Jobs" and do for physics education what Apple did to tablet computing and the music industry. All of the pieces are there, someone is going to put them together. I don't know who, and I don't know how, and I don't know when, but I can smell enough gasoline to know that something is going to catch fire if there is a spark.
What do you mean by pulling a "Steve Jobs"?
twofish-quant
#7
Sep7-11, 09:03 PM
P: 6,863
Quote Quote by MaxManus View Post
What do you mean by pulling a "Steve Jobs"?
Steve Jobs was able to transform the way music was distributed, by pulling a lot of pieces, knocking heads together, and coming up with the iPod. He was able to do pretty much the same thing with tablet computers with the iPad. A lot of the barriers in putting an iPod together were not technical, but political and social (i.e. getting music companies to license content.)

Someone in the next five to ten years is going to do that with physics education. Right now you can get the "raw material" for a undergraduate degree online, but no one has put together the pieces in the way that Jobs put together all of the pieces to produce the iPod.

Someone will.


Register to reply

Related Discussions
In binary can we have a value with deci centi mili or more lower valued prefix? Computers 14
Difference between Identical , Equal , Equivalent Calculus & Beyond Homework 9
GHz ac frequency- Maximum Practical generation - Solenoid question for the experts. Electrical Engineering 12
Scary Practical Joke General Discussion 1