# Trivial zeros in the Riemann Zeta function

by msariols
Tags: riemann, riemann zeta, zeta function
 P: 1 Hello, I have read in many articles that the trivial zeros of the Riemann zeta function are only the negative even integers (-2, -4, -6, -8, -10, ...). The reason why these are the only ones is that when substituting them in the functional equation, the function is 0 because sin($\frac{x·\pi}{2}$)=0. My question is: why aren't positive even integers trivial zeros too? The sinus of k·$\pi$ =0 with either k$\in$Z positive or negative. Remember that the functional equation is: $\zeta$(x)=$\zeta$(1-x)·$\Gamma$ (1-x)·2$^{x}$·$\pi$$^{x-1}$·sin ($\frac{x·\pi}{2}$)
 P: 1,666 At the even integers, the simple poles of $\Gamma(1-z)$ are canceled by the simple zeros of $\sin(\pi z/2)$ and since the poles and zeros are of the same order (simple), this cancelation is non-zero, that is, the singularity is a removable one. For example consider the limit: $$\lim_{x\to 4} \; \Gamma(1-x) \sin(\pi x/2)=\frac{\pi}{12}$$