Register to reply

Trivial zeros in the Riemann Zeta function

by msariols
Tags: riemann, riemann zeta, zeta function
Share this thread:
Oct8-11, 11:46 AM
P: 1
Hello, I have read in many articles that the trivial zeros of the Riemann zeta function are only the negative even integers (-2, -4, -6, -8, -10, ...).

The reason why these are the only ones is that when substituting them in the functional equation, the function is 0 because sin([itex]\frac{x\pi}{2}[/itex])=0.

My question is: why aren't positive even integers trivial zeros too?

The sinus of k[itex]\pi[/itex] =0 with either k[itex]\in[/itex]Z positive or negative.

Remember that the functional equation is:

[itex]\zeta[/itex](x)=[itex]\zeta[/itex](1-x)[itex]\Gamma[/itex] (1-x)2[itex]^{x}[/itex][itex]\pi[/itex][itex]^{x-1}[/itex]sin ([itex]\frac{x\pi}{2}[/itex])
Phys.Org News Partner Science news on
Scientists discover RNA modifications in some unexpected places
Scientists discover tropical tree microbiome in Panama
'Squid skin' metamaterials project yields vivid color display
Oct8-11, 01:06 PM
P: 1,666
At the even integers, the simple poles of [itex]\Gamma(1-z)[/itex] are canceled by the simple zeros of [itex]\sin(\pi z/2)[/itex] and since the poles and zeros are of the same order (simple), this cancelation is non-zero, that is, the singularity is a removable one. For example consider the limit:

[tex]\lim_{x\to 4} \; \Gamma(1-x) \sin(\pi x/2)=\frac{\pi}{12}[/tex]
Oct25-11, 04:34 PM
P: 150
also because at the positive even integers, the zeta function is defined the Dirichlet series 1+1/2^s+1/3^s+1/4^s+... which converges for all positive even numbers.

Register to reply

Related Discussions
Can someone explain zeros and zeta function for Riemann Hypothesis? (Yr13) Linear & Abstract Algebra 19
Trivial zeros of Zeta Riemann Function Linear & Abstract Algebra 1
Trivial zeros of the Riemann zeta function Linear & Abstract Algebra 3
Riemann Zeta function zeros Calculus 1
Riemann Zeta zeros Linear & Abstract Algebra 31