James S Saint said:
It would be a bit pointless to have a half dozen clocks spread out that all show the same time and run at the same rate.
You don't have to have real clocks spread out all over the place but you do have to imagine such clocks at each different location or else you aren't following Einstein's convention for setting up a Frame of Reference. Read this from near the end of section 1 of Einstein's paper:
Thus with the help of certain imaginary physical experiments we have settled what is to be understood by synchronous stationary clocks located at different places, and have evidently obtained a definition of “simultaneous,” or “synchronous,” and of “time.” The “time” of an event is that which is given simultaneously with the event by a stationary clock located at the place of the event, this clock being synchronous, and indeed synchronous for all time determinations, with a specified stationary clock.
James S Saint said:
We have t as the station time,
and we have t' as Einstein's time.
We have [t,x]s and,
we have [t',x']e
We also have x'=0 as Einstein's location, but what is the location of the station in the station frame? Is it at one location such as where the station-master is at x=17 or is it spread out to include the two-stop clocks between x=13 to x=21 or something else?
You should not think of the events in Einstein's frame as belonging exclusively to Einstein or associated with him. They are merely coordinates in his established Frame of Reference. So any event anywhere and at any time in the station frame also has coordinates in Einstein's frame but that isn't meant to imply that they are located where Einstein is. They can be in front of him or behind him.
James S Saint said:
So with that, you are saying that when t=14 (the stop-time for the station POV) and x=17 (the distance to the train from the button for the station POV),
[14,17]s = [6.351,x']t for the moment and distance of stop-time at distance x'.
x' = γ(x-tβ) = 1.1547(17-14*0.5) = 1.1547(17-7) = 1.1547(10) = 11.547.
thus;
[14,17]s = [6.351,11.547]e
Now how did the train get up to 11.547 from the button from anyone's POV at press time?
The train isn't at 11.547 when the button is pressed. But there is an imaginary clock located x'=11.547 μls which reads t'=6.351 μs when the button is pressed. Remember, the x' coordinate for the train (where Einstein is located) is always 0. I already showed you how to convert the coordinate time on this imaginary clock to the coordinate time in the station frame at the end of post #10.
James S Saint said:
The original stipulation was that when the button was pressed, the train was only 10 from the button from the station POV. Now we are talking about a 17 and an 11.547.
In the station frame the button is fixed at x=17 but in Einstein's frame, it is moving and so it has a changing x' coordinate but at the moment the button is pressed, x'=11.547 and t'=6.351.
James S Saint said:
I accepted that you took it that the stationmaster saw "10" and thus pressed the button, which wasn't the actual stipulation, but we can work with that. So now we have the stop-clock at 14 when the button is pressed.
I specifically asked you:
ghwellsjr said:
How does the stationmaster know when to press the stop button?
And you answered:
James S Saint said:
He doesn't "know when". It was stated that he did press it as 6μls, obviously from the station's POV
I took this to mean he randomly pressed the button for no reason at all but it happened to be "when the train was 6 μls from the first clock". You did also stipulate that the station-master saw 10 μs on the two stop-clocks when he pressed the button so I don't know why you are now saying it wasn't stipulated.
James S Saint said:
Now the stipulation was also that the button was pressed when the train was 6 from the first clock, or 10 from the button. If again, you assume that the stationmaster must perceive the train to be at 6 from the first clock, then it would take 10 more for him to perceive that (complicating it further) and leading to the assessment that the button was pressed when the train was 5 closer to the button, making it 5 away.
The button is pressed at t=10 and Einstein is only x=10 away (from station POV) or x=5 if you assume the perception issue with the stationmaster. Either way, I am not seeing how you are now coming up with him being 11.547 away from his POV. He cannot be perceiving himself any further way than the stationmaster perceives him.
You seem to be saying that the station sees Einstein 10 away from the button when Einstein sees the button 11.547 away from himself. Those distances can't be different.
If we can clear up your notation enough to see what is what, or if it gets too confusing, I'll just show you my method and we can go from there.
Again, this is not my notation, I didn't invent the concept of a Frame of Reference or the concept of an event or the Lorentz Transform. These are fundamental concepts to learn if you want to understand Einstein's Special Relativity.
Also again, I made no assumption with regard to the stationmaster perceiving the arrival of the train 10 μls away from him. I was just following your statement that he doesn't know when to press the button. So any of your comments regarding timing of events different from what I outlined in post #7 should not be brought up now. You agreed to them.
But you are making a mistake when you say that the button is pressed at t=10. You earlier stated "So now we have the stop-clock at 14 when the button is pressed" so why are you changing your mind now?
If you want to determine how far away Einstein was from the button when it was pressed, one way to do this is to start with the coordinate time of when Einstein arrived at the button. I worked this out near the end of post #10 and it's 29.445. Now you subtract from this the coordinate time of when the button was pressed: 29.445-12.124=17.321. Since Einstein is traveling at 0.5c we can calculate the distance as 17.321*0.5=8.660.
So when you say that the distance the station sees Einstein away from the button cannot be different than the distance Einstein sees himself from the button, you are wrong. This is another fundamental concept of Special Relativity, that distances are relative, specifically, length contracted. The distance of 10 in the station frame becomes 10/γ or 10/1.1547 which equals 8.66.