Register to reply

Spring-Mass System Matrix

by MysticalSwan
Tags: matrix, springmass
Share this thread:
MysticalSwan
#1
Mar22-12, 11:41 AM
P: 3
The differential equation that model an undamped system of 3 masses and 4 springs with external forces acting on each of the three masses is

m1x1''=-k1x1+k2(x2-x1)+u1(t)
m2x1''=k2(x1-x2)+k3(x3-x2)+u2(t)
m3x3''=k3(x2-x3)-k4x3+u3(t)

a)express the system using matrix notation x'=Kx+g(t) for the state vector x=(x1,x2,x3)T. Identify the matrix K and the input g(t).

b) Give conditions m1, m2, m3, k1, k2, k3, k4 under which K is a symmetric matrix.




I am pretty sure I have gotten the first part but I am having trouble even figuring out what the second part means. When I created my matrix K it seems like it is already a symmetric matrix. Any help would be great.
Phys.Org News Partner Science news on Phys.org
Sapphire talk enlivens guesswork over iPhone 6
Geneticists offer clues to better rice, tomato crops
UConn makes 3-D copies of antique instrument parts
AlephZero
#2
Mar22-12, 05:12 PM
Engineering
Sci Advisor
HW Helper
Thanks
P: 6,948
I don't undestand part (b) either.

The equations you are given will be symmetric for any values of the m's and k's - so what was the question really asking you about


Register to reply

Related Discussions
Three spring two mass system, compression of the middle spring Introductory Physics Homework 3
Mass spring system where springs have mass Classical Physics 2
Spring Mass system where springs also have mass Introductory Physics Homework 1
What happens in acompletely reversing mass-spring system? (spring turns inside out) Introductory Physics Homework 2
Effect of mass and springs on the damping of mass spring system Classical Physics 5