Proof of Fermat's Little Theorem

  • Thread starter Thread starter amcavoy
  • Start date Start date
  • Tags Tags
    Proof Theorem
amcavoy
Messages
663
Reaction score
0
I just have one question about the proof. Why does (p-1)!a^{p-1}=(p-1)!\pmod{p}? It seems like it would be true if the (mod p) was instead (mod a).

Thanks for your help.
 
Physics news on Phys.org
(There is more than one proof of Fermat's little theorem.)

Let a be invertible mod p.

Consider the p - 1 numbers

1a, 2a, ..., (p - 1)a.

Since a was invertible, they are all distinct mod p. So we have p - 1 numbers which are distinct mod p, so they must be congruent to 1, 2, 3, ..., p - 1 in some order.

Thus

(1a)(2a)...((p - 1)a) = 1*2*...*(p - 1) (mod p)
<=>
(p - 1)! * a^(p - 1) = (p - 1)! (mod p).
 
Since a was invertible, they are all distinct mod p. So we have p - 1 numbers which are distinct mod p, so they must be congruent to 1, 2, 3, ..., p - 1 in some order.

Can you explain this? I understand the rest of the proof except for this part.

Thanks again.

While I'm at it: I have asked this before, but received responses with suggestions for books to read. Is there any good online material to read about number theory? Anything would be good, but I don't want to spend a lot of money on books and my local library has nothing on number theory.
 
Last edited:
What he is saying above is that each one of ja is unique. Since if ja==ka Mod p, then multiplying by a^-1, we have ja(a^-1)==ka(a^-1) Mod p implies j==k Mod p.
 
apmcavoy said:
It seems like it would be true if the (mod p) was instead (mod a).


if it were mod a then the RHS would be identically zero, wouldn't it?
 
Yes, right. I have it now thanks.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 12 ·
Replies
12
Views
492
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
31
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K