Register to reply

Energy in elliptic orbits

by Päällikkö
Tags: elliptic, energy, orbits
Share this thread:
Päällikkö
#1
Oct2-05, 07:16 AM
HW Helper
P: 481
How does one derive the total energy in an elliptic orbit:
[tex]E= - \frac{GMm}{2a}[/tex]
where a is the semi-major axis?
I did manage to get the result for the special case of circular orbit, as
[tex]v = \sqrt{\frac{GM}{R}}[/tex]

But the problem is that I can't figure out a way to express v in an elliptic orbit.

If at all possible, give hints (that is: not a direct answer), as I'd rather try it myself first :).
Phys.Org News Partner Science news on Phys.org
New type of solar concentrator desn't block the view
Researchers demonstrate ultra low-field nuclear magnetic resonance using Earth's magnetic field
Asian inventions dominate energy storage systems
Päällikkö
#2
Oct2-05, 08:11 AM
HW Helper
P: 481
Not really, no.

I can't get the given equation:
[tex]v=\sqrt{2\mu\left({1\over{r}}-{1\over{2a}}\right)}[/tex]
without assuming the result (total energy) I'm trying to get.

EDIT: Either I am getting paranoid or someone replied, but deleted his/her message :).
Fermat
#3
Oct2-05, 08:16 AM
HW Helper
P: 876
Would a formula for elliptical velocity be too much help ?

Päällikkö
#4
Oct2-05, 08:18 AM
HW Helper
P: 481
Energy in elliptic orbits

Quote Quote by Fermat
Would a formula for elliptical velocity be too much help ?
Isn't that the equation I wrote in my second message?

I can get it by assuming
[tex]E= - \frac{GMm}{2a}[/tex]
but that's the equation I want to prove.
Fermat
#5
Oct2-05, 08:22 AM
HW Helper
P: 876
Quote Quote by Päällikkö
...

EDIT: Either I am getting paranoid or someone replied, but deleted his/her message :).
Sorry for the confusion. That was me, then I thouight that maybe that was too much of hint - that you didn't really want !
Päällikkö
#6
Oct4-05, 03:06 PM
HW Helper
P: 481
Help, anyone?
Andrew Mason
#7
Oct4-05, 10:36 PM
Sci Advisor
HW Helper
P: 6,671
Quote Quote by Päällikkö
How does one derive the total energy in an elliptic orbit:
[tex]E= - \frac{GMm}{2a}[/tex]
where a is the semi-major axis?
I did manage to get the result for the special case of circular orbit, as
[tex]v = \sqrt{\frac{GM}{R}}[/tex]

But the problem is that I can't figure out a way to express v in an elliptic orbit.

If at all possible, give hints (that is: not a direct answer), as I'd rather try it myself first :).
The speed can be resolved into two orthogonal components - radial and tangential. Since [itex]v^2 = v_t^2 + v_r^2[/itex] (Pythagoras) the total kinetic energy is simply the sum of the tangential and radial kinetic energies. Use that, together with the fact that angular momentum and total energy is constant, to derive the relationship between radius, speed and total energy.

[tex]E(r) = KE + PE = \frac{1}{2}mv^2 - \frac{GMm}{r} = \frac{1}{2}mv_t^2 + \frac{1}{2}mv_r^2 - \frac{GMm}{r}[/tex]

Use the fact that the radial KE (middle term) is 0 when r is maximum or minimum (ie. when r = a or r=b)

AM


Register to reply

Related Discussions
Satellite orbits and energy Introductory Physics Homework 7
Elliptic Integrals General Math 2
Energy for orbits Introductory Physics Homework 4
Least-energy Orbits Astronomy & Astrophysics 5