## nullspace(kernel) and transpose

hmmm...I have problems understanding this...how can the null space if a matrix(not necessarily a square) be the same as that of its transpose?

Thanks in advance
 PhysOrg.com science news on PhysOrg.com >> Ants and carnivorous plants conspire for mutualistic feeding>> Forecast for Titan: Wild weather could be ahead>> Researchers stitch defects into the world's thinnest semiconductor
 Recognitions: Homework Help Science Advisor If the matrix is not square, then this is impossible. The null space of a matrix A consists of vectors x such that Ax = 0. If A is not square, and Ax is defined (i.e. you are allowed to multiply A and x) then ATx is not even defined. I'm not sure what you're asking though. In general, the null space of a matrix is not the same if it as the null space of its transpose. However, certainly if the matrix is symmetric then its kernel is the same as the kernel of its transpose, since the matrix is its own transpose.
 Thread Tools

 Similar Threads for: nullspace(kernel) and transpose Thread Forum Replies Linear & Abstract Algebra 3 Linear & Abstract Algebra 2 Calculus & Beyond Homework 2 Linear & Abstract Algebra 6 Introductory Physics Homework 1