How can I use integrals to find the circumference of an ellipse?

AI Thread Summary
The discussion revolves around using integrals to calculate the circumference of an ellipse, with two approaches presented. The first method involves rectangular coordinates but raises concerns about the absence of the variable b in the equation. The second method utilizes parametric equations, which seems more promising, yet the user struggles with integrating it effectively. There is uncertainty about whether these integrals can accurately represent the circumference, suggesting the term 'perimeter' might be more appropriate. The conversation highlights the complexity of the topic and the need for further guidance.
StephenPrivitera
Messages
360
Reaction score
0
I have two integrals to give the circumference of an ellipse. I can't solve either.
First, using rectangular coordinates,
1/2s=S{[1+(f'(x))^2]^(1/2)}dx taken from x=-a to x=a
Since, y^2=b/a(a^2-x^2)
2y*y'=-2bx/a
y'=-bx/(ay)
[f'(x)]^2=(x^2)/(a^2-x^2)
At this point, I'm already uncomfortable because b is no longer in the equation, and clearly the circumference should depend on both a and b.
Next, using parametrics, I have
s=S[(bcosx)^2+(asinx)^2]^(1/2)dx from x=0 to x=2pi
This integral shows more promise for finding the answer. I expect the answer to be C=pi(a+b) simply because this would reduce to C=(2pi)r for the case when a=b. I've tried manipulating the second integral in every way possible to fit in trig substitution but it just won't work. It doesn't look like integration by parts will help. Of course, there's always the possiblity that these integrals do not give the circumference of an ellipse at all. Even so, it would be satisfying to find an answer.
Can someone give me a hint?
 
Mathematics news on Phys.org
It should not rightly be called the 'circumference,' which is a word reserved for circles. It is better to call it the 'perimeter.'

This is, in fact, a complicated topic. Here's a good resource to get you started:

http://home.att.net/~numericana/answer/ellipse.htm

- Warren
 
Last edited by a moderator:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top