Recent content by askmathquestions
-
A
B Why can gravity escape from a black hole?
So what is Hawking radiation if virtual particles are a purely made-up phenomena? Why did Stephan Hawking becomes so accredited for that radiation that it's named after him? What about the Casimir effect's "vacuum fluctuations"? Did physicsts lie when they said they reported the Casimir effect...- askmathquestions
- Post #7
- Forum: Quantum Physics
-
A
I What group might represent the symmetries of these carbon rings?
The carbon rings in the upper-middle of this page https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/react3.htm such as corannulene or coronene possess symmetries. But, they are not the typical dihedral arrangements of points, like a single hexagon or single pentagon or single equilateral...- askmathquestions
- Thread
- Carbon Group Rings Symmetries
- Replies: 1
- Forum: Linear and Abstract Algebra
-
A
I Discontinuous systems? And why do we need uniqueness anyway?
Much of the theory of ordinary differential equations is based around continuous derivatives. A lot of nice theories came together with semi-group theory of linear systems and the Banach contraction theorem, but these are limited to continuous functions. Then you get into partial differential...- askmathquestions
- Thread
- Systems Uniqueness
- Replies: 2
- Forum: Differential Equations
-
A
I What are the applications of inverses of vector functions?
I don't think there's any implication of ##x = f^{-1}(x)## unless ##x## is identically the identity function. Both ##f## and ##f^{-1}## may have overlapping domains.- askmathquestions
- Post #16
- Forum: General Math
-
A
I What are the applications of inverses of vector functions?
##f(f^{-1}(x)) = x##, is that correct or incorrect?- askmathquestions
- Post #14
- Forum: General Math
-
A
I Does a set of matrices form a ring? Or what is the algebraic structure?
You're saying that as if you "had" or "needed" to do anything, even though I doubt anyone tried to force you to do anything.- askmathquestions
- Post #24
- Forum: Linear and Abstract Algebra
-
A
I Does a set of matrices form a ring? Or what is the algebraic structure?
Instead of trying to "provoke" people which is clearly rude, you have a few options: 1 is, don't comment on a question you don't like, go do something else with your life 2 is be patient and understanding, work with the poster. I think that's irrelevant to trying to manipulating someone with...- askmathquestions
- Post #22
- Forum: Linear and Abstract Algebra
-
A
I What are the applications of inverses of vector functions?
What I proposed is highly conventional and extends to non-function objects (operators), so I'm confused by what you're saying and still don't see a concise answer. Consider an invertible linear transform ##T##, like say a square matrix. Then we may calculate ##T^{-1}\cdot T[x] = I x.## Notice...- askmathquestions
- Post #12
- Forum: General Math
-
A
I Where did this substitution technique go wrong?
Okay, after putting down the computer screen and having a chance to figure out what's going on in this problem, I figured out the crucial step that was left out and causing me confusion. We start with ##\frac{d}{dx}y(x) = (ax + b)y(x)##. Then we make a substitution ##u = ax + b \implies...- askmathquestions
- Post #26
- Forum: Differential Equations
-
A
I Where did this substitution technique go wrong?
The ability to learn is equally as important as the ability to communicate, and communicate respectfully at that. The derivative of ##\frac{d}{dx} log(x)^2## is ##\frac{2log(x)}{x}##. The derivative of ##e^{\cos(x)}## is ##-e^{\cos(x)} \cdot \sin(x)##. My issue isn't that a don't understand the...- askmathquestions
- Post #25
- Forum: Differential Equations
-
A
I Where did this substitution technique go wrong?
Alright well I guess we have an unsolved mystery that stumps even the experienced members: what is ##?##?- askmathquestions
- Post #23
- Forum: Differential Equations
-
A
I Where did this substitution technique go wrong?
There's intermediate steps that you're leaving out. My substitution appears to be different than yours, so keep that in mind. So, we start with the equation ##\frac{d}{dx}y(x) = (ax+b)y(x)##. Then I make the substitution ##u = ax+b## which implies ##x = \frac{u-b}{a}##. our equation becomes...- askmathquestions
- Post #21
- Forum: Differential Equations
-
A
I Where did this substitution technique go wrong?
##d/dx f(g(x)) = f'(g(x)) \cdot g'(x)## That's the chain rule, that's what I'm familiar with, no problem there. Going back to the original problem, we have ##\frac{d}{dx} y(x) = (ax+b)y(x)## a non-autonomous differential equation. Now I say ## u = ax + b## which also implies ##\frac{u-b}{a} =...- askmathquestions
- Post #18
- Forum: Differential Equations
-
A
I Where did this substitution technique go wrong?
Right, I'm aware of the chain rule, but it's ambiguous if I'm applying it correctly, and I also don't understand the intuition behind saying ##y(x) = z(ax+b)##. If ##y(x) = z(ax+b)##, what happens to the ##ax+b## coefficient of ##y## in the original equation?- askmathquestions
- Post #16
- Forum: Differential Equations
-
A
I Where did this substitution technique go wrong?
Sure, I can brush up on multivariable calculus at some point. But, this still leaves me wondering about the original method. Can the original substitution I used work? Or is it intrisically flawed? What went wrong in my original approach? I still don't see concise answers to those questions.- askmathquestions
- Post #13
- Forum: Differential Equations