##d^2=(x_Q-x_P)^2+(y_Q-y_P)^2##
##100=(3k-1)^2+(4k-2)^2##
##100=(3k-1)^2+(4k-2)^2##
##(a-b)^2=a^2-2ab+b^2##
##(3k-1)^2=(3k)^2-2(3k)(-1)+(-1)^2=9k^2+6k+1##
##(4k-2)^2=(4k)^2-2(4k)(-2)+(-2)^2=16k^2+16k+4##
##(3k-1)^2+(4k-2)^2=25k^2+22k+5##
@Steve4Physics, I can see that I am using the quadratic...
##10^2=5+25k-22k##
##95=3k##
##k=\frac {95}{3}##
##\vec Q=k\left<3,4\right>=\left<3k,4k\right>=\left<3\frac {95}{3},4\frac {95}{3}\right>=\left<95,126\frac {2}{3}\right>##
Is this right @Steve4Physics, @PeroK?
Edit: I am sure it's wrong.
##\vec P=P\left<1,2\right>##
##\vec Q=Q\frac{1}{5}\left<3,4\right>##
Let ##k=\frac{1}{5}Q##
##\vec Q=k\left<3,4\right>=\left<3k,4k\right>##
##\vec P\cdot\vec Q=1\cdot3k+2\cdot4k=11k##
##\vec R## is the resultant of ##\vec P## and ##\vec Q##
Law of Cosines:
##R^2=P^2+Q^2-2\vec P\cdot\vec Q##...