Recent content by Sam Fielder

  1. S

    Proportionality of frictional force

    So would we say that Ff=-vμ ?? To say that the frictional force is proportional and opposite to the velocity multiplied by a constant?
  2. S

    Phase Difference with Initial Conditions for SHM

    I do understand how to find the phase value now, thanks for the input!
  3. S

    Phase Difference with Initial Conditions for SHM

    --So how would I go about finding the spring constant using the natural frequency with the equation we both suggested?-- EDIT: Did not see your edit. Dismiss comment above. Don't see how this is particularly unsolvable, since it is on a assignment that I am working on, will check back later.
  4. S

    Phase Difference with Initial Conditions for SHM

    Wouldn't you have to have the mass of the system that is oscillating in order to find the spring constant of the system; this equation; ω_0 = root(k/m) with ω_0 being the natural frequency.
  5. S

    Phase Difference with Initial Conditions for SHM

    Homework Statement A mass-spring system with a natural frequency of 3.6 Hz is started in motion with an initial displacement from equilibrium of 6.1 cm and an initial velocity of 0.7 m/s. What is the value of ϕ? (Question aside: Finding the amplitude of the resulting function?) Homework...
  6. S

    Undergrad Acceleration of Submarine when Ejecting Water from its Tanks

    This ended up being the final answer: 1.265, thanks siddharth23 and Bystander for all your work with helping me through this, much appreciated! I may have another question very soon, about torque and forces, look out for that one on the new posts! :)
  7. S

    Undergrad Acceleration of Submarine when Ejecting Water from its Tanks

    With this being the final mass, I have somehow achieved my first answer of 1.265 ms^-2.
  8. S

    Undergrad Acceleration of Submarine when Ejecting Water from its Tanks

    I will carry out the calculations as this value being the final mass.
  9. S

    Undergrad Acceleration of Submarine when Ejecting Water from its Tanks

    As the assignment told me that this value was incorrect. Unfortunately.
  10. S

    Undergrad Acceleration of Submarine when Ejecting Water from its Tanks

    The assignment has told me it is incorrect.
  11. S

    Undergrad Acceleration of Submarine when Ejecting Water from its Tanks

    Or is it that its a difference in force, which I imagine to be true. Weight of Ship = 589581 N Buoyancy Force = (1000kg/m^3)(9.81ms^-2)(69m^3) = 676890 N Difference in the two: 87309 N --> divide this by the new ships mass 87309N/60100kg = 1.4527 ms^-2 upwards acceleration. I believe this...
  12. S

    Undergrad Acceleration of Submarine when Ejecting Water from its Tanks

    Simplified: V = m/density = 69000kg/(1000kg/m^3) = 69m^3 Weight of water displaced: 8.9m^3 * 1000kg/m^3 = 8900 kg Weight of ship (post-ejection) = 69000-8900 = 60100 kg (* 9.81ms^-2) = 589581N (Fw) Find acc. --> F(w) = pgV --> F(w)/pV = g --> 589581N/((1000kg/m^3)(69m^3)) = 8.5446 ms^-2 9.81...
  13. S

    Undergrad Acceleration of Submarine when Ejecting Water from its Tanks

    Well I would use the gravitational acc. with the buoyancy formula to get the Volume displaced by the ship, then I would use the amount of water ejected with its density to find its weight. Subtract that amount from the ships weight, and then work backwards with the same volume, to find the...
  14. S

    Undergrad Acceleration of Submarine when Ejecting Water from its Tanks

    Well at second glanced, it only seems now that the reason why it is acc. upwards is because of less weight, rather than more buoyancy, because buoyancy only has to do with the amount of water being displaced around the vessel, which is directly related to the volume of the sub which does not change.
  15. S

    Undergrad Acceleration of Submarine when Ejecting Water from its Tanks

    Well mass would go down, because it is now filled with 8.9m^3 of air instead of water, but the volume would be the same, because the size of the sub has not changed.