Here is the full answer, as I said before..
An open cylinder of height 5ft and cross sectional area of 1 ft2 is initially empty. There is a small hole at the bottom of the cylinder with an area of 0.005 ft2. Water is drawn into the tank at a rate of 4.8ft3/min. At the same time water is...
This is also give me inspiration how to do this, of course don't need to be sorry for telling my mistake, thank you for that, I really mean it.
Now I just need to solve the integral, I am close to see the answer. I will post again here once I get it, thank you so much !
:):):)
Thank you for your inspiration again :) , yup i made mistakes and tried to redo it again.
I recalculate as :
cross sectional area of 1 ft2 = B
area of hole 0.005 ft2 = A
g = 32.17 ft/sec2
velocity in = 4.8 ft3/min = 0.08 ft3/sec
velocity out = α√2gh ; α = 0.6 (source : J.C Borda, based on Edwin...
Thank you for your hint.
I calculate the time to reach height of 1 foot is 12.5 second if there is no hole, then if there is a hole, it will takes longer time to reach that height. It proof my answer 0.21 second is wrong.
here is my detailed calculation :
cross sectional area of 1 ft2 = B
area...
Homework Statement
An open cylinder of height 5ft and cross sectional area of 1 ft2 is initially empty. There is a small hole at the bottom of the cylinder with an area of 0.005 ft2. Water is drawn into the tank at a rate of 4.8ft3/min. At the same time water is discharged out of the...