Suggestion Why there is no combinatorics sub forum?

  • Thread starter Thread starter AdrianZ
  • Start date Start date
AI Thread Summary
The discussion highlights the absence of a dedicated subforum for combinatorics and discrete mathematics, despite their significance in the mathematical landscape. Participants argue that while these areas are crucial, the lack of frequent questions and sustained interest does not justify a separate forum. Concerns are raised about the challenges of managing numerous specific subforums and the fluidity of mathematical categories over time. Comparisons are made to other fields, such as condensed matter physics, which also lacks a dedicated forum despite its size. Ultimately, the creation of new forums depends on existing traffic and engagement rather than the perceived importance of the subject.
AdrianZ
Messages
318
Reaction score
0
combinatorics and discrete mathematics are two of the most fascinating branches of mathematics and have hugely contributed to the development of mathematics. discrete math. problems are usually way more challenging than other areas of mathematics, yet there is no sub forum for this important branch of mathematics on here. why?
 
Physics news on Phys.org
AdrianZ said:
yet there is no sub forum for this important branch of mathematics on here. why?
To you "combinatorics and discrete mathematics are two of the most fascinating branches of mathematics." Others might disagree and call out nonlinear dynamics as the most important branch of mathematics, yet we don't have a sub forum dedicated to nonlinear dynamics. Yet others will call for a forum dedicated to manifold theory.

There are several problems with creating a lot of very specific sub fora. One is that boundaries between concepts get less and less firm the more specific one gets. Another is that categories change over time. The killer, though, is that too many subcategories makes for a mess with regard to forum management.

If you can't find a fit, we do have General Math. In this particular case however, the Set Theory, Logic, Probability, Statistics sub forum is quite applicable.
 
D H said:
To you "combinatorics and discrete mathematics are two of the most fascinating branches of mathematics." Others might disagree and call out nonlinear dynamics as the most important branch of mathematics, yet we don't have a sub forum dedicated to nonlinear dynamics. Yet others will call for a forum dedicated to manifold theory.

There are several problems with creating a lot of very specific sub fora. One is that boundaries between concepts get less and less firm the more specific one gets. Another is that categories change over time. The killer, though, is that too many subcategories makes for a mess with regard to forum management.

If you can't find a fit, we do have General Math. In this particular case however, the Set Theory, Logic, Probability, Statistics sub forum is quite applicable.

It sounds irrational to say that discrete mathematics isn't one of the most important areas of mathematics. Mathematics is the science of studying two different kinds of structures, continuous structures like real numbers and discrete structures like finite groups, finite fields, quasi-groups, etc. Discrete mathematics is almost half of mathematics, non-linear dynamics is not. Number theory, Group theory, finite fields theory, designing algorithms and many other areas of mathematics, especially many branches of applied mathematics, are strongly linked to discrete mathematics. don't you think so?

Also I don't get why discrete math. problems should be posted on general math. All math problems and questions can be posted on there, so why do we have sub forums for other branches of mathematics? general math would be enough for all of those branches.
 
The reason of course is that there aren't enough questions in discrete math. Every subforum has about 5 to 10 new questions every day. This is a healthy statistic.

But to be honest, I don't see a lot of questions in discrete math. It has been a long time I've seen something on graph theory, for example. A new subcategory is only useful if there are a lot of questions on it. I don't think discrete math satisfies that.
 
AdrianZ said:
It sounds irrational to say that discrete mathematics isn't one of the most important areas of mathematics. Mathematics is the science of studying two different kinds of structures, continuous structures like real numbers and discrete structures like finite groups, finite fields, quasi-groups, etc. Discrete mathematics is almost half of mathematics, non-linear dynamics is not. Number theory, Group theory, finite fields theory, designing algorithms and many other areas of mathematics, especially many branches of applied mathematics, are strongly linked to discrete mathematics. don't you think so?

Also I don't get why discrete math. problems should be posted on general math. All math problems and questions can be posted on there, so why do we have sub forums for other branches of mathematics? general math would be enough for all of those branches.

We frequently get such question on why such-and-such does not have a forum to itself.

Let's me give you this fact for you to consider. Condensed matter physics is the LARGEST sub-division in physics, and in fact, can easily be argued as the largest subtopic in physics. Still, do you see a forum solely dedicated to this subject area? Go take a look around. It shares the subforum with Atomic/molecular physics, and computational physics! Imagine that! Even a subject area that is the LARGEST in the field of physics does not have a forum all to itself!

So already, the argument of importance, of significance, and of size has no bearing on a subject matter getting its own forum. What is more important are (i) frequency of the topic being posted (ii) the level of SUSTAINED interest in that topic (iii) the number of regular members participating in that topic. It is of no point to create a forum for a topic just because ... There has to be an online demand for it in this forum that can justify such a creation.

So forget what you think about the subject matter in general. Do you think your topic qualifies in all the 3 criteria to justify the creation of its own forum? Do you think the posting frequency matches that of, say, the posting frequency in the Relativity forum?

Zz.
 
Last edited:
New forums are created when the traffic already exists, not to wait for a traffic to develop.
 
OK, if the majority thinks so then I'm convinced.
 
Of course, if Erdos were posting here, he could justify the sub-forum all by himself.
 
  • #10
Would that give us all Erdos number of 1?
 

Similar threads

Replies
9
Views
2K
Replies
3
Views
1K
Replies
22
Views
3K
Replies
11
Views
2K
Back
Top