Let ##D## be a smooth, bounded domain in ##\mathbb{R}^n## and ##f : D \to (0, \infty)## a continuous function. Prove that there exists no ##C^2##-solution ##u## of the nonlinear elliptic problem ##\Delta u^2 = f## in ##D##, ##u = 0## on ##\partial D##.
Hello everyone,
I'm currently going through Strauss "introduction to differential equations" and i can't get around a certain proof that he
gives on chapter 11.5 page(327 (2nd edition)).Specifically, the proof refers to a certain version of Fredholm's alternative theorem.
Assume that we are...
Homework Statement
Hi - I'm on the last chapter of this book and am a bit stuck. I am given a very basic fortran program (code attached in the zip file) and asked to 'investigate its accuracy and stability, for various values of Δt and lattice spacings'. The program is an implementation of the...
Given an energy functional $ E=\int_{0}^{\infty} \,dr.r\left[\frac{1}{2}\left(\d{\phi}{r}\right)^2 - S.\phi\right] $
I am told that discretizing on a lattice ri=ih (h=lattice size, i is i axis) leads to :
$ 2{r}_{i}{\phi}_{i} - {r}_{i+\frac{1}{2}}{\phi}_{i+1} - {r}_{i-\frac{1}{2}}{\phi}_{i-1}...
Hi, struggling to follow some text which later leads to computer algorithms for Elliptic PDEs...
It reads:
To derive a discrete approx. to the PDE based on the variational principle,. we 1st approx. E in terms of the values of the field at the lattice points and then vary w.r.t. them. The...
Preface: just want to start by saying that I'm 99% sure I'm having a stability issue here in the way I'm implementing the time step since if I set \Delta t \ge 1 then for any stopping time > 1, the algorithm works as it should. For time steps smaller than 1, as the time step gets smaller and...
For an elliptic PDE Uxx + Uyy + Ux + Uy = -1 in D = {x^2 + y^2 = 1} and U = 0 on the boundary of D = {x^2 + y^2 = 1}
is it possible for me to make a change of variables and eliminate the Ux and Uy and get the Laplace equation Uaa + Ubb = 0?
I tried converting into polar coordinates, but the...
Hello
In our math course, we encountered the following elliptic PDE:
y^{2}u_{xx} + u_{yy} = 0
In order to solve it, we converted it to the characteristic equation,
y^{2}\left(\frac{dy}{dx}\right)^{2} + 1 = 0
Next, we wrote:
\frac{dy}{dx} = \frac{i}{y}
My question is...