MHB -2.1.10 solve ty' -y =t^2e^{-1} u(x)

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The discussion revolves around solving the differential equation ty' - y = t^2e^{-1}. The initial steps involve dividing by t and finding the integrating factor, leading to the equation (1/t)y' - (1/t)y = te^{-1}. A participant points out a minor mistake in the solution provided, clarifying that t(1/t)y' = y' - (y/t). The correct solution is derived as y = (t^2/e) + c_1t, which resolves the confusion from the incorrect answer initially given. The thread concludes with confirmation of the correct solution.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find the general solution of the given differential equation
$\displaystyle ty^\prime -y =t^2e^{-1}\\$
Divide thru by t
$\displaystyle y^\prime-\frac{y}{t}=te^{-1}\\$
Obtain $u(t)$
$\displaystyle u(t)=\exp\int -\frac{1}{t} \, dt =\frac{1}{t}\\$
Multiply thru with $\displaystyle\frac{1}{t}$
$\displaystyle y^\prime -\frac{1}{t}y =te^{-1}\\$
Simplify:
$(\frac{1}{t}y)'=te^{-1} \\$

ok got stuck here so...

Answer from bk
$\displaystyle
\color{red}{y=c_1 -te^{-1}}$ (this is wrong)

$$\tiny\textsf{Text Book: Elementary Differential Equations and Boundary Value disappearProblems}$$
 
Last edited:
Physics news on Phys.org
karush said:
Find the general solution of the given differential equation
$\displaystyle ty^\prime -y =t^2e^{-1}\\$
Divide thru by t
$\displaystyle y^\prime-\frac{y}{t}=te^{-1}\\$
Obtain $u(t)$
$\displaystyle u(t)=\exp\int -\frac{1}{t} \, dt =\frac{1}{t}\\$
Multiply thru with $\displaystyle\frac{1}{t}$
$\displaystyle y^\prime -\frac{1}{t}y =te^{-1}\\$
Simplify:
$(\frac{1}{t}y)'=te^{-1} \\$

ok got stuck here so...

Answer from bk
$\displaystyle
\color{red}{y=c_1 -te^{-1}}$

$$\tiny\textsf{Text Book: Elementary Differential Equations and Boundary Value disappearProblems}$$

Hi karush, :)

I think you have done a minor mistake; observe that; $$t\left(\frac{y}{t}\right)'=y'-\frac{y}{t}$$.

Hope you can do it from here :)
 
Ok mucho mahalo
 
Last edited:
Sudharaka said:
Hi karush, I think you have done a minor mistake; observe that;
$\displaystyle t\left(\frac{y}{t}\right)'=y'-\frac{y}{t}$. Hope you can do it from here
So if
$\displaystyle t\left(\frac{y}{t}\right)'=y'-\frac{y}{t}$
then
$\displaystyle t\left(\frac{y}{t}\right)'=te^{-1}$
or $\displaystyle
\left(\frac{y}{t}\right)'=e^{-1}$
then
$\displaystyle \frac{y}{t}=\int e^{-1} dt=\frac{t}{e}+c_1$
multiply thru by t
$\displaystyle y=\frac{t^2}{e}+c_1t$

kinda maybe hopefully raj
 
Last edited:
karush said:
So if
$\displaystyle t\left(\frac{y}{t}\right)'=y'-\frac{y}{t}$
then
$\displaystyle t\left(\frac{y}{t}\right)'=te^{-1}$
or $\displaystyle
\left(\frac{y}{t}\right)'=e^{-1}$
then
$\displaystyle \frac{y}{t}=\int e^{-1} dt=\frac{t}{e}+c_1$
multiply thru by t
$\displaystyle y=\frac{t^2}{e}+c_1t$

kinda maybe hopefully raj

Yes that is correct. Well done. :)
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K