- #1

karush

Gold Member

MHB

- 3,269

- 5

$\tiny{2.2.3}$

1000

$\textsf{find the solution:}$

$$y^\prime+(\tan x)y=\sin {2x} \quad -\pi < x < \pi/2$$

$\textit{find u(x)}$

$$u(x)=\exp\int \tan x \, dx = -e^{\ln(\cos x)}=-\cos x$$ok just want to see if this first step is $\tiny{\color{blue}{From \, Text \, Book: \,Elementary \, Differential \, Equations \, and \, Boundary \, Value \, Problems \,

by: \, William \, Boyce \, and \, Richard \, C. \, DiPrima \,

Rensselaer \, Polytechnic \, Institute, \, 1969}}$

1000

$\textsf{find the solution:}$

$$y^\prime+(\tan x)y=\sin {2x} \quad -\pi < x < \pi/2$$

$\textit{find u(x)}$

$$u(x)=\exp\int \tan x \, dx = -e^{\ln(\cos x)}=-\cos x$$ok just want to see if this first step is $\tiny{\color{blue}{From \, Text \, Book: \,Elementary \, Differential \, Equations \, and \, Boundary \, Value \, Problems \,

by: \, William \, Boyce \, and \, Richard \, C. \, DiPrima \,

Rensselaer \, Polytechnic \, Institute, \, 1969}}$

Last edited: