MarkFL said:
You want to begin by writing:
$$\frac{dy}{dx}=1+\frac{y}{x}+\left(\frac{y}{x}\right)^2$$
Next consider the substitution:
$$v=\frac{y}{x}\implies y=vx\implies \frac{dy}{dx}=x\frac{dv}{dx}+v$$
So, make the substitutions and simplify...what do you get?
Next we have:
$$x\frac{dv}{dx}+v=1+v+v^2$$
$$x\frac{dv}{dx}=1+v^2$$
$$\int \frac{1}{v^2+1}\,\frac{dv}{dx}\,dx=\int\frac{1}{x}\,dx$$
$$\arctan(v)=\ln|c_1x|$$
$$v=\tan(\ln|c_1x|)$$
$$y(x)=x\tan(\ln|c_1x|)$$
[DESMOS]{"version":7,"graph":{"viewport":{"xmin":-10,"ymin":-12.5,"xmax":10,"ymax":12.5}},"randomSeed":"1941c0dc1cb008249dbf0302b22e1d8c","expressions":{"list":[{"type":"expression","id":"1","color":"#c74440","latex":"y=x\\ln\\left(\\left|cx\\right|\\right)"},{"type":"expression","id":"2","color":"#2d70b3","latex":"c=0.1","hidden":true,"slider":{"hardMin":true,"hardMax":true,"min":".01","max":"5","step":".001"}},{"type":"expression","id":"3","color":"#388c46"}]}}[/DESMOS]