MHB 2.2.5 de equation with y(1)=1/2

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The discussion focuses on solving the initial value problem given by the differential equation xy' + 2y = x^2 - x + 1 with the initial condition y(1) = 1/2. The solution process involves rewriting the equation in standard linear form, finding the integrating factor u(x) = x^2, and integrating to find the general solution. The correct solution is identified as y = (1/12)(3x^2 - 4x + 6 + 1/x^2), with the constant c determined through the initial condition. The participants express confusion about the integration steps and the validity interval for the solution, which remains unresolved.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{Find the solution of the given initial value problem. State the interval in which the solution is valid.}$
$$xy^\prime+2y=x^2-x+1, \qquad y(1)=\frac{1}{2}$$
$\textit{rewrite}$
$$y' +\frac{2}{x}y=x-1+\frac{1}{x}$$
$\textit {Find u(x) }$
$$\displaystyle u(x)=\exp\int \frac{2}{x} \, dx =\ln e^{x^2}=x^2$$
$\textit{multiply thru with $u(x)=x^2$}$
$$x^2y' +(x^2)'y=x^2(x^2-x+1)$$
$\textsf{rewrite:}$
$$(x^2 y)'=x^4-x^3+x^2 \, \color{red}{\textit{I think the problem is here}}$$
$\textit{Integrate }$
$$\displaystyle x^2y=\int x^4-x^3+x^2 \, dx
=\frac{x^5}{5}-\frac{x^4}{4}+\frac{x^3}{3}+c$$
$\textit{divide thru by $x^2$}$
$$\displaystyle y=\frac{x^3}{5}-\frac{x^2}{4}+\frac{x}{3}+\frac{c}{x^2}$$
$\textit{book answer(I couldn't get this) }$
$$y=\color{red}{\frac{1}{12}(3x^2-4x+6+\frac{1}{x^2})}$$
 
Last edited:
Physics news on Phys.org
You have the ODE: $xy'+2y=x^2-x+1$ you should multiply both sides of the equation by $x$ and not x^2, that's where you got it wrong, your RHS is multiplied by x^2 and not x.
 
$\textit{but isn't $u(x)=x^2$}$
 
Last edited:
karush said:
$\textit{but isn't $u(x)=x^2$}$

Yes, but you used it on the original ODE, not the one in standard linear form. :)
 
Ok here is my final flower arraignment

$\textit{Find the solution of the given initial value problem.} $
$\textit{State the interval in which the solution is valid.}$
\begin{array}{lrll}
\textit{Given:}\\
%\qquad&&&\qquad&\\
\displaystyle &xy^\prime+2y&\displaystyle =x^2-x+1,\quad y(1)=\frac{1}{2} &&&(1)\\
\textit{Divide thru by x}\\
&\displaystyle y' +\frac{2}{x}y&\displaystyle =x-1+\frac{1}{x}& &&(2)\\
\textit {Find u(x)}\\
&\displaystyle u(x)&\displaystyle =\exp\int \frac{2}{x} \, dx =\ln e^{x^2}=x^2&&&(3)\\
\textit{Multiply thru $x^2$}\\
&x^2y' +(x^2)'y&\displaystyle =x^2\left(x-1+\frac{1}{x}\right)&&&(4)\\
\textit{Rewrite:}\\
&(x^2 y)'&=x^3-x^2+x \, &&&(5)\\
\textit{Integrate}\\
&\displaystyle x^2y&\displaystyle =\int x^3-x^2+x \, dx &&&(6)\\
&&\displaystyle=\frac{x^4}{4}-\frac{x^3}{3}+\frac{x^2}{2}+c\\
\textit{Divide thru by $x^2$}\\
&\displaystyle y&\displaystyle=\frac{x^2}{4}-\frac{x}{3}+\frac{1}{2}+\frac{c}{x^2}&&&(7)\\
\textit{Solve for c}\\
&\displaystyle y(1)&\displaystyle=\frac{1}{4}-\frac{1}{3}+\frac{1}{2}+c=\frac{1}{2}&&&(8)\\
\textit{With $\displaystyle c=\frac{1}{12}$ then}\\
&y&=\color{red}{\displaystyle\frac{1}{12}\left(3x^2-4x+6+\frac{1}{x^2}\right)}&&&(9)
\end{array}

suggestions and insults welcome
actually I don't know what the interval is that valid?
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K