206.8.5.49 Express the integrand as sum of partial fractions

Click For Summary
SUMMARY

The discussion focuses on expressing the integrand $\int\frac{30s+30}{(s^2+1)(s-1)^3}\, ds$ as a sum of partial fractions. The correct decomposition is identified as $\frac{A\,s + B}{s^2 +1} + \frac{C}{s - 1} + \frac{D}{(s - 1)^2} + \frac{E}{(s - 1)^3}$, with specific values $A=0$ and $D=0$. The integration process yields the result $I_{49}=15\arctan(s)+\frac{15s-30}{(s-1)^2}+C$.

PREREQUISITES
  • Understanding of partial fraction decomposition
  • Familiarity with integration techniques, specifically for rational functions
  • Knowledge of the arctangent function and its properties
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study advanced techniques in partial fraction decomposition
  • Learn about integration of rational functions using the method of residues
  • Explore the properties and applications of the arctangent function in calculus
  • Investigate polynomial long division as a precursor to partial fraction decomposition
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus and integral calculus, as well as educators looking for examples of partial fraction decomposition.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.8.5.49}$
$\textsf{Express the integrand as sum of partial fractions}$
\begin{align}
&& I_{49}&=\int\frac{30s+30}{(s^2+1)(s-1)^3}\, ds& &(1)& \\
&\textsf{expand}& \\
&& &=\displaystyle
15\int\frac{1}{(s^2+1)}\, ds
-15\int\frac{1}{(s-1)^2}\, ds
+30\int\frac{1}{(s-1)^3}\, ds& &(2)& \\
&\textsf{integrate}&\\
&& &=\displaystyle 15\arctan\left(s\right)
-\frac{-15}{s-1} +\frac{15}{(s-1)^2}& &(3)&\\
&\textsf{simplify}&\\
&& I_{49}&=\displaystyle15\arctan\left(s\right)
+\dfrac{15s-30}{\left(s-1\right)^2}+C& &(4)& \\
\end{align}

$\textsf{the demonator could have expanded to a polynomial?
also some answers had ln in the final answer}$
 
Physics news on Phys.org
karush said:
$\tiny{206.8.5.49}$
$\textsf{Express the integrand as sum of partial fractions}$
\begin{align}
&& I_{49}&=\int\frac{30s+30}{(s^2+1)(s-1)^3}\, ds& &(1)& \\
&\textsf{expand}& \\
&& &=\displaystyle
15\int\frac{1}{(s^2+1)}\, ds
-15\int\frac{1}{(s-1)^2}\, ds
+30\int\frac{1}{(s-1)^3}\, ds& &(2)& \\
&\textsf{integrate}&\\
&& &=\displaystyle 15\arctan\left(s\right)
-\frac{-15}{s-1} +\frac{15}{(s-1)^2}& &(3)&\\
&\textsf{simplify}&\\
&& I_{49}&=\displaystyle15\arctan\left(s\right)
+\dfrac{15s-30}{\left(s-1\right)^2}+C& &(4)& \\
\end{align}

$\textsf{the demonator could have expanded to a polynomial?
also some answers had ln in the final answer}$

The correct partial fraction decomposition you need is $\displaystyle \begin{align*} \frac{A\,s + B}{s^2 +1} + \frac{C}{s - 1} + \frac{D}{\left( s - 1 \right) ^2} + \frac{E}{\left( s - 1 \right) ^3} \end{align*}$.
 
Prove It said:
The correct partial fraction decomposition you need is $\displaystyle \begin{align*} \frac{A\,s + B}{s^2 +1} + \frac{C}{s - 1} + \frac{D}{\left( s - 1 \right) ^2} + \frac{E}{\left( s - 1 \right) ^3} \end{align*}$.
yes but $A=0$ and $D=0$
 

Similar threads

Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K