MHB 206.8.5.49 Express the integrand as sum of partial fractions

Click For Summary
The integrand is expressed as a sum of partial fractions, leading to the integral decomposition of I₄₉ into three distinct integrals. The integration results in terms involving arctangent and rational functions, specifically yielding 15arctan(s) and a rational expression in terms of (s-1). There is a discussion about the possibility of expanding the denominator into a polynomial, with some solutions presenting logarithmic terms in their final answers. The correct partial fraction decomposition includes coefficients A, B, C, D, and E, with A and D determined to be zero. The final simplified result is presented as 15arctan(s) + (15s - 30)/(s - 1)² + C.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.8.5.49}$
$\textsf{Express the integrand as sum of partial fractions}$
\begin{align}
&& I_{49}&=\int\frac{30s+30}{(s^2+1)(s-1)^3}\, ds& &(1)& \\
&\textsf{expand}& \\
&& &=\displaystyle
15\int\frac{1}{(s^2+1)}\, ds
-15\int\frac{1}{(s-1)^2}\, ds
+30\int\frac{1}{(s-1)^3}\, ds& &(2)& \\
&\textsf{integrate}&\\
&& &=\displaystyle 15\arctan\left(s\right)
-\frac{-15}{s-1} +\frac{15}{(s-1)^2}& &(3)&\\
&\textsf{simplify}&\\
&& I_{49}&=\displaystyle15\arctan\left(s\right)
+\dfrac{15s-30}{\left(s-1\right)^2}+C& &(4)& \\
\end{align}

$\textsf{the demonator could have expanded to a polynomial?
also some answers had ln in the final answer}$
 
Physics news on Phys.org
karush said:
$\tiny{206.8.5.49}$
$\textsf{Express the integrand as sum of partial fractions}$
\begin{align}
&& I_{49}&=\int\frac{30s+30}{(s^2+1)(s-1)^3}\, ds& &(1)& \\
&\textsf{expand}& \\
&& &=\displaystyle
15\int\frac{1}{(s^2+1)}\, ds
-15\int\frac{1}{(s-1)^2}\, ds
+30\int\frac{1}{(s-1)^3}\, ds& &(2)& \\
&\textsf{integrate}&\\
&& &=\displaystyle 15\arctan\left(s\right)
-\frac{-15}{s-1} +\frac{15}{(s-1)^2}& &(3)&\\
&\textsf{simplify}&\\
&& I_{49}&=\displaystyle15\arctan\left(s\right)
+\dfrac{15s-30}{\left(s-1\right)^2}+C& &(4)& \\
\end{align}

$\textsf{the demonator could have expanded to a polynomial?
also some answers had ln in the final answer}$

The correct partial fraction decomposition you need is $\displaystyle \begin{align*} \frac{A\,s + B}{s^2 +1} + \frac{C}{s - 1} + \frac{D}{\left( s - 1 \right) ^2} + \frac{E}{\left( s - 1 \right) ^3} \end{align*}$.
 
Prove It said:
The correct partial fraction decomposition you need is $\displaystyle \begin{align*} \frac{A\,s + B}{s^2 +1} + \frac{C}{s - 1} + \frac{D}{\left( s - 1 \right) ^2} + \frac{E}{\left( s - 1 \right) ^3} \end{align*}$.
yes but $A=0$ and $D=0$
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
4K