MHB -29.1 Find a general solution to the system of DE

Click For Summary
The discussion focuses on finding a general solution to a system of differential equations represented in matrix form. The first step involves determining the eigenvalues of the coefficient matrix, which are found to be 5 and 1. Eigenvectors corresponding to these eigenvalues are calculated, leading to a transformation of the system into a diagonal form. This allows for the separation of variables, enabling the derivation of individual solutions for each component of the system. The final general solution is expressed in terms of the original variables, incorporating constants from the integration process.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find a general solution to the system of differential equations
\begin{align*}\displaystyle
y'_1&=2y_1+3y_2+5x\\
y'_2&=y_1+4y_2+10
\end{align*}
rewrite as

$$Y'=\left[\begin{array}{c}2 & 3 \\ 1 & 4 \end{array}\right]Y
+\left[\begin{array}{c}5x\\ 10\end{array}\right]$$

ok not sure what to do with this
 
Last edited:
Physics news on Phys.org
karush said:
Find a general solution to the system of differential equations
\begin{align*}\displaystyle
y'_1&=2y_1+3y_2+5x\\
y'_2&=y_1+4y_2+10
\end{align*}
rewrite as

$$Y'=\left[\begin{array}{c}2 & 3 \\ 1 & 4 \end{array}\right]Y
+\left[\begin{array}{c}5x\\ 10\end{array}\right]$$

ok not sure what to do with this
Just like as a single differential equation, solve this first. (I don't know the correct terminology here, but I would call this the homogeneous solution.)
[math]\left ( \begin{matrix} y_1 \\ y_2 \end{matrix} \right ) ^{\prime} = \left [ \begin{matrix} 2 & 3 \\ 1 & 4 \end{matrix} \right ] ~ \left ( \begin{matrix} y_ 1 \\ y_2 \end{matrix} \right )[/math]

Big hint: What are the eigenvalues of the matrix?

-Dan
 
topsquark said:
Just like as a single differential equation, solve this first. (I don't know the correct terminology here, but I would call this the homogeneous solution.)
[math]\left ( \begin{matrix} y_1 \\ y_2 \end{matrix} \right ) ^{\prime} = \left [ \begin{matrix} 2 & 3 \\ 1 & 4 \end{matrix} \right ] ~ \left ( \begin{matrix} y_ 1 \\ y_2 \end{matrix} \right )[/math]

Big hint: What are the eigenvalues of the matrix?

-Dan
$\left[\begin{array}{c}2 & 3 \\ 1 & 4 \end{array}\right]$
$\left| \begin{array}{cc} - \lambda + 2 & 3 \\1 & - \lambda + 4 \end{array} \right|
=\left(- \lambda + 2\right) \left(- \lambda + 4\right) - 3
=\lambda^2-6\lambda+8-3
=(\lambda-5)(\lambda-1)=0$
so the zeros are
$\lambda = 5,1$
well so far
ok I quess we don't need the eiganvectors?
 
Last edited:
Yes, you do need the eigenvectors. An eigenvector corresponding to eigenvalue 1 satisifies \begin{bmatrix}2 & 3 \\ 1 & 4\end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix}= \begin{bmatrix}x \\ y \end{bmatrix}which is equivalent to the two equations 2x+3y= x and x+ 4y= y. Those are both equivalent to x+ 3y= 0 or x= -3y. All eigenvectors corresponding to eigenvalue 1 are of the form \begin{bmatrix}-3y \\ y \end{bmatrix}. Taking y= 1 an eigenvector is \begin{bmatrix}-3 \\ 1 \end{bmatrix}.<br /> <span style="font-family: 'Verdana'">An eigenvector corresponding to eigenvalue 5 satisifies \begin{bmatrix}2 & 3 \\ 1 & 4\end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix}= \begin{bmatrix}5x \\ 5y \end{bmatrix}which is equivalent to the two equations 2x+3y= 5x and x+ 4y= 5y. Those are both equivalent to x= y. All eigenvectors corresponding to eigenvalue 5 are of the form \begin{bmatrix} y\\ y \end{bmatrix}. Taking y= 1 an eigenvector is \begin{bmatrix}1 \\ 1 \end{bmatrix}.<br /> <span style="font-family: 'Verdana'">And the reason we need the eigenvectors is this: Let M be the matrix having those eigenvectors as columns: M= \begin{bmatrix}-3 & 1 \\ 1 & 1 \end{bmatrix} and M^{-1}= \begin{bmatrix}-\frac{1}{4} & \frac{1}{4} \\ \\frac{1}{4} & \frac{3}{4}\end{bmatrix}.<br /> <span style="font-family: 'Verdana'">Then \begin{bmatrix}-\frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{3}{4}\end{bmatrix}\begin{bmatrix}2 & 3 \\ 1 & 4\end{bmatrix}\begin{bmatrix}-\frac{1}{4} & \frac{1}{4} \\ \\frac{1}{4} & \frac{3}{4}\end{bmatrix}= \begin{bmatrix}1 & 0 \\ 0 & 5\end{bmatrix}, the diagonal matrix having the eigenvalues of the original matrix on the diagonal. (Any n by n matrix having n independent eigenvectors can be "diagonalized" that way.)<br /> <span style="font-family: 'Verdana'">To use that, think of the general differential equation Y'= AY+ B, such that M^{-1}AM= D with D the diagonal matrix having the eigenvalues of A on the diagonal and M the matrix with the eigenvectors of A as columns. Let U= M^{-1}Y so that Y= MU. Since M is a constant matrix we can write the equation as (MU)'= MU'= AMU. Multiply by M^{-1}: U'= M^{-1}AMU= DU. Since D is a diagonal matrix that separates into separate equations: M^{-1}Y'= M^{-1}AMY+ M^{-1}B[/itex[ or U'= DY+ M^{-1}B.<br /> <span style="font-family: 'Verdana'">In our case, the matrix equation becomes U'= \begin{bmatrix}u' \\ v' \end{bmatix}= \begin{bmatrix}1 & 0 \\ 0 & 5 \end{bmatrix}\begin{bmatrix}u \\ v \end{bmatrix}= \begin{bmatrix}u \\ 5v\end{bmatrix}+ \begin{bmatrix}-\frac{5x}{4}+ \frac{5}{2} \\ \frac{25x}{4}+ \frac{75}{4}\end{bmatrix}.<br /> <span style="font-family: 'Verdana'">That separates into the equations u'= u- \frac{5x}{4}+ \frac{5}{2} which has general solution u(x)= C_1e^{x}- \frac{5x}{4}- \frac{15}{4} and v'= 5v+ \frac{25x}{4}+ \frac{75}{4} which has general solution v(x)= C_2e^{5x}-\frac{5x}{4}+ 4. So U= \begin{bmatrix}C_1e^x- \frac{5x}{4}-\frac{15}{4} \\ C_2e^{5x}- \frac{5x}{4}+ 4\end{bmatrix}. Since U= M^{-1}Y, Y= MU= \begin{bmatrix}-3C_1e^x+ C_2e^{5x}+ \frac{15x}{2}+ 4 \\ C_1e^x+ C_2e^{5x}- \frac{5x}{2}+ \frac{1}{4}<br /> (modulo any arithmetic errors!)</span></span></span></span></span></span>
 
wow, that was a really a great help...

not sure why the latex didn't render completely
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K