411.1.3.15 Prove A\cap(B/C)=(A\cap B)/(A\cap C)

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on proving the set identity \(A\cap(B/C)=(A\cap B)/(A\cap C)\) and demonstrating that the inverse of the composition of two invertible mappings \(f:A \to B\) and \(g:B \to C\) is given by \((g \, o \, f)^{-1} = f^{-1} \, o \, g^{-1}\). The proof for the set identity is constructed using definitions of intersection and set difference, leading to a formal representation of the identity. The discussion also emphasizes the importance of verifying the properties of function inverses analytically.

PREREQUISITES
  • Understanding of set theory, specifically intersection and set difference.
  • Familiarity with function mappings and their inverses.
  • Basic knowledge of formal proof construction in mathematics.
  • Ability to analyze and manipulate mathematical expressions involving sets and functions.
NEXT STEPS
  • Study formal proofs in set theory to enhance understanding of identities like \(A\cap(B/C)=(A\cap B)/(A\cap C)\).
  • Learn about the properties of function inverses, particularly in the context of composition.
  • Explore advanced topics in set theory, such as Cartesian products and power sets.
  • Practice constructing proofs for various mathematical identities and theorems.
USEFUL FOR

Students of mathematics, particularly those studying set theory and abstract algebra, as well as educators looking to deepen their understanding of function mappings and set identities.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{411.1.3.15}$

$\text{15. Prove $A\cap(B/C)=(A\cap B)/(A\cap C)$}$
and
$\textsf{19. Let $f:A \to B$ and $g:B \to C$ be in invertable mappings;} \\
\text{that is, mappings such that $f^{-1}$ and $g^{-1}$ exist}\\
\text{Show that $\textit{$(g \, o \, f)^{-1}$}$}$

ok I am starting to do this and want to take a class in it starting 082018
so hope mhb can help me get a head start

text pdf is on pg15 #15 and #19
http://text:http://abstract.ups.edu/download/aata-20150812.pdf
 
Physics news on Phys.org
karush said:
$\tiny{411.1.3.15}$

$\text{15. Prove $A\cap(B/C)=(A\cap B)/(A\cap C)$}$
and
$\textsf{19. Let $f:A \to B$ and $g:B \to C$ be in invertable mappings;} \\
\text{that is, mappings such that $f^{-1}$ and $g^{-1}$ exist}\\
\text{Show that $\textit{$(g \, o \, f)^{-1}$}$}$

ok I am starting to do this and want to take a class in it starting 082018
so hope mhb can help me get a head start

text pdf is on pg15 #15 and #19
http://text:http://abstract.ups.edu/download/aata-20150812.pdf

Hi karush,

For 15., consider the following definitions:

\(A\cap B = \{x\mid x\in A\wedge x\in B\}\)

\(A\setminus B = \{x\mid x\in A \wedge x\notin B\}\)

It follows that

\(\begin{aligned}A\cap(B\setminus C) &= \{x\mid x\in A\wedge(x\in B \wedge x\notin C)\}\\ &= \{x\mid (x\in A\wedge x\in B)\wedge (x\in A\wedge x\notin C)\}\\ &=\{x\mid (x\in A\cap B)\wedge (x\notin A\cap C)\}\\ &= (A\cap B)\setminus (A\cap C)\end{aligned}\)

You might need to be more formal with your proof, but this should give you enough of an idea as to how to construct a formal proof of this set identity.

For 19., we note that \(f:A\rightarrow B\) and \(g:B\rightarrow C\); Hence \(g\circ f:A\rightarrow C\). To show that \((g\circ f)^{-1}= f^{-1}\circ g^{-1}\), you want to show:
  1. that for any \(c\in C\), \(((g\circ f)\circ(f^{-1}\circ g^{-1}))(c) = c\), and
  2. that for any \(a\in A\), \(((f^{-1}\circ g^{-1})\circ (g\circ f))(a) = a\).
I leave it for you to verify this analytically.

I hope this helps!
 
thanks
much appreciate all that

kinda by myself with this right now class hasn't started yet
gota catch bus now
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K