MHB [a,b) and (a,b) are equinumerous

  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
The discussion focuses on demonstrating that the interval [a,b) is equinumerous with (a,b) by finding a bijective function. It is noted that while the inclusion mapping from (a,b) to [a,b) is injective, it is not surjective since it cannot map to the endpoint a. A suggestion is made to simplify the problem by considering the specific case where a = 0 and b = 1. A piecewise-defined function is proposed to create a bijection, specifically mapping 0 to 1/2 and 1/n to 1/(n+1) for n ≥ 2, while leaving all other numbers unchanged. This approach aims to establish the desired equivalence between the two intervals.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Smile)

I want to show that the interval $[a,b)$ is equinumerous with this one: $(a,b)$.
How could we find a bijective function from $[a,b)$ to $(a,b)$? (Thinking)
 
Physics news on Phys.org
Well, $(a,b) \subset [a,b)$. Wouldn't this solve everything?
 
Fantini said:
Well, $(a,b) \subset [a,b)$. Wouldn't this solve everything?

Not exactly. The inclusion mapping $i : (a,b)\to [a,b)$, although injective, is not surjective: there is no $x \in (a,b)$ such that $i(x) = a$.

Evinda, I suggest first considering the case $a = 0$ and $b = 1$. Construct a bijection $f : [0,1) \to (0,1)$ using a piecewise-defined function.
 
Euge said:
Evinda, I suggest first considering the case $a = 0$ and $b = 1$. Construct a bijection $f : [0,1) \to (0,1)$ using a piecewise-defined function.

What piecewise-defined function could we use? :confused:
 
Map $0$ to $1/2$ and $1/n$ to $1/(n+1)$ for $n\ge2$. All other numbers are mapped to themselves.
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.