MHB A multi-part PMF/joint PMF question

  • Thread starter Thread starter nacho-man
  • Start date Start date
nacho-man
Messages
166
Reaction score
0
Please refer to the attached image.

for Question 1,
Referring to the solutions, I know how to derive the values of
$z$ in the table, but not of $p_Z(z)$. What have they done there?

View attachment 1610
 

Attachments

  • JOINT PMF Q.jpg
    JOINT PMF Q.jpg
    36.9 KB · Views: 95
Physics news on Phys.org
nacho said:
Please refer to the attached image.

for Question 1,
Referring to the solutions, I know how to derive the values of
$z$ in the table, but not of $p_Z(z)$. What have they done there?

View attachment 1610

First step it to express Z = F (X,Y) = 3 X - 2 Y as function of X and Y...

F(1,1) = 1

F(1,2) = -1

F(1,3) = - 3

F(2,1) = 4

F(2,2) = 2

F(2,3) = 0

F(3,1) = 7

F(3,2) = 5

F(3,3) = 3

Setting P (Z) the PMF of Z we have... P(-3) = 1/84 (1 + 9) = 5/42

P (-1) = 1/84 (1 + 4) = 5/84Are You able to proceed?... Kind regards $\chi$ $\sigma$
 
chisigma said:
First step it to express Z = F (X,Y) = 3 X - 2 Y as function of X and Y...

Setting P (Z) the PMF of Z we have... P(-3) = 1/84 (1 + 9) = 5/42

P (-1) = 1/84 (1 + 4) = 5/84

$\chi$ $\sigma$

where do you get the bracketed terms from, such as (1 + 9) and (1 + 4)
 
Last edited:
Sorry, I know this is bumping and at mhb this is against the rules, but I am really quite desperate (and promise never to do this again).
I was able to do this previously so i know it can't be difficult, I've just forgotten something basic.

but how exactly is $p_Z(z)$ obtained?
I would be so grateful if someone could tell me. I have an exam in two days and don't want to lose easy marks like this !
 
nacho said:
where do you get the bracketed terms from, such as (1 + 9) and (1 + 4)
This is recalculating the values in the first table in the image in post #1. Thus,
\[
P(Z=-3)=P(X=1,Y=3)=p_{X,Y}(1,3)=c(1^2+3^2) =(1+9)/84=10/84
\]
and
\[
P(Z=-1)=P(X=1,Y=2)=p_{X,Y}(1,2)=c(1^2+2^2)= (1+4)/84=5/84
\]
Here it turns out that each value of $Z$ can be produced by one and only one pair of values of $X$ and $Y$, i.e., the function $F$ from post #2 is injective. Therefore, $P(Z=z)=P(X=x,Y=y)$ where $(x,y)$ is the unique pair such that $F(x,y)=z$. If $F$ were not unique, then
\[
P(Z=z)=\sum_{F(x,y)=z}P(X=x,Y=y)
\]
(the sum is over all $(x,y)$ such that $F(x,y)=z$).
 
Thank you so much, I really appreciate that!
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Back
Top