MHB A multi-part PMF/joint PMF question

  • Thread starter Thread starter nacho-man
  • Start date Start date
Click For Summary
The discussion focuses on deriving the probability mass function (PMF) of a random variable Z defined as Z = F(X,Y) = 3X - 2Y. Participants clarify how to calculate the probabilities p_Z(z) for specific values of Z using the joint distribution of X and Y. The calculations involve identifying unique pairs (x,y) that produce each value of Z, confirming that F is injective. The PMF values are derived by evaluating the joint probabilities at these pairs and adjusting for normalization. The conversation emphasizes the importance of understanding the relationship between Z and its generating pairs to accurately compute the PMF.
nacho-man
Messages
166
Reaction score
0
Please refer to the attached image.

for Question 1,
Referring to the solutions, I know how to derive the values of
$z$ in the table, but not of $p_Z(z)$. What have they done there?

View attachment 1610
 

Attachments

  • JOINT PMF Q.jpg
    JOINT PMF Q.jpg
    36.9 KB · Views: 98
Physics news on Phys.org
nacho said:
Please refer to the attached image.

for Question 1,
Referring to the solutions, I know how to derive the values of
$z$ in the table, but not of $p_Z(z)$. What have they done there?

View attachment 1610

First step it to express Z = F (X,Y) = 3 X - 2 Y as function of X and Y...

F(1,1) = 1

F(1,2) = -1

F(1,3) = - 3

F(2,1) = 4

F(2,2) = 2

F(2,3) = 0

F(3,1) = 7

F(3,2) = 5

F(3,3) = 3

Setting P (Z) the PMF of Z we have... P(-3) = 1/84 (1 + 9) = 5/42

P (-1) = 1/84 (1 + 4) = 5/84Are You able to proceed?... Kind regards $\chi$ $\sigma$
 
chisigma said:
First step it to express Z = F (X,Y) = 3 X - 2 Y as function of X and Y...

Setting P (Z) the PMF of Z we have... P(-3) = 1/84 (1 + 9) = 5/42

P (-1) = 1/84 (1 + 4) = 5/84

$\chi$ $\sigma$

where do you get the bracketed terms from, such as (1 + 9) and (1 + 4)
 
Last edited:
Sorry, I know this is bumping and at mhb this is against the rules, but I am really quite desperate (and promise never to do this again).
I was able to do this previously so i know it can't be difficult, I've just forgotten something basic.

but how exactly is $p_Z(z)$ obtained?
I would be so grateful if someone could tell me. I have an exam in two days and don't want to lose easy marks like this !
 
nacho said:
where do you get the bracketed terms from, such as (1 + 9) and (1 + 4)
This is recalculating the values in the first table in the image in post #1. Thus,
\[
P(Z=-3)=P(X=1,Y=3)=p_{X,Y}(1,3)=c(1^2+3^2) =(1+9)/84=10/84
\]
and
\[
P(Z=-1)=P(X=1,Y=2)=p_{X,Y}(1,2)=c(1^2+2^2)= (1+4)/84=5/84
\]
Here it turns out that each value of $Z$ can be produced by one and only one pair of values of $X$ and $Y$, i.e., the function $F$ from post #2 is injective. Therefore, $P(Z=z)=P(X=x,Y=y)$ where $(x,y)$ is the unique pair such that $F(x,y)=z$. If $F$ were not unique, then
\[
P(Z=z)=\sum_{F(x,y)=z}P(X=x,Y=y)
\]
(the sum is over all $(x,y)$ such that $F(x,y)=z$).
 
Thank you so much, I really appreciate that!
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.

Similar threads