I A. P. French "Matter and Radiation: The Inertia of Energy"

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading A. P. French's book: "Special Relativity". Currently I am focused on the section: "Matter and Radiation: The Inertia of Energy."

Under the heading: "Matter and Radiation: The Inertia of Energy", French writes the following:

French ...Matter & Radiation ... P16.png

French ...Matter & Radiation ... P17  ... png.png




In the above text by Young we read the following:

" ... ... But this being an isolated system, we are reluctant to believe that the center of mass in the box plus its contents have moved. We therefore postulate that the radiation has carried with it the equivalent of a mass m , such that

mL + M(delta)x = 0 ... ... ... 1-7

... ... "


Can someone please explain how Young formulates equation 1-7 ... how does he arrive at this equation?

Peter
 

Attachments

  • French ...Matter & Radiation ... P16.png
    French ...Matter & Radiation ... P16.png
    30.4 KB · Views: 64
Physics news on Phys.org
What specifically is not clear? Once you get the idea that light has momentum and that the centre of mass should not move, the kinematics are quite straightforward, are they not?
 
  • Like
Likes Math Amateur
1-7 is just requiring that the center of mass doesn't move. A mass ##m## has moved one distance and a mass ##M## has moved another, but ##\sum m_ix_i## has not changed.

Note that this argument is slightly handwaving because the light pulse moves ##L-\Delta x##, so he's quietly neglected a term like ##m\Delta x## as being very small.
 
  • Like
Likes Math Amateur
PeroK said:
What specifically is not clear? Once you get the idea that light has momentum and that the centre of mass should not move, the kinematics are quite straightforward, are they not?

Well, I was having some difficulty proving 1-7 ... BUT ... I note that Young writes that 1-7 is a postulate or assumption ... so we do not have to prove it ... and ... if you assume 1-7 to be true then 1-8 follows by simple algebra ...

Peter
 
Ibix said:
1-7 is just requiring that the center of mass doesn't move. A mass ##m## has moved one distance and a mass ##M## has moved another, but ##\sum m_ix_i## has not changed.

Note that this argument is slightly handwaving because the light pulse moves ##L-\Delta x##, so he's quietly neglected a term like ##m\Delta x## as being very small.

I note that Young writes that 1-7 is a postulate or assumption ... so we do not have to prove it ... and ... if you assume 1-7 to be true then 1-8 follows by simple algebra ...

Thanks again for your help ...

Peter
 
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
Back
Top