A Subset of a Graph with No Perfect Matching

  • Context: MHB 
  • Thread starter Thread starter joypav
  • Start date Start date
  • Tags Tags
    Graph
Click For Summary
SUMMARY

The discussion focuses on proving a property of graphs with no perfect matching, specifically addressing the conditions under which a subset S of a graph G leads to the existence of odd components in G-S. The proof utilizes the contrapositive of Tutte's 1-Factor Theorem, establishing that if a vertex in S is adjacent to fewer than three odd components of G-S, then G has a perfect matching. The proof is structured in two cases: when S is empty and when S is non-empty, ultimately demonstrating that the number of odd components must be at least three.

PREREQUISITES
  • Understanding of Tutte's 1-Factor Theorem
  • Familiarity with graph theory concepts such as odd and even components
  • Knowledge of contrapositive reasoning in mathematical proofs
  • Basic skills in constructing and analyzing graph subsets
NEXT STEPS
  • Study advanced topics in graph theory, focusing on perfect matchings and their properties
  • Explore the implications of Tutte's Theorem in various graph configurations
  • Learn about graph component analysis and its applications in combinatorial optimization
  • Investigate other proofs related to matching theory and their methodologies
USEFUL FOR

Mathematicians, computer scientists, and students specializing in graph theory, particularly those interested in matching problems and combinatorial proofs.

joypav
Messages
149
Reaction score
0
The problem given is...

Let G be a graph with no perfect matching. Then, for some $S \subset G$,

1. $|S|<O(G−S)$
2. Each vertex in S is adjacent to vertices in at least three odd components of $G−S$.
(where $O(G−S)$ is the number of odd components of $G−S$)


Number 1. is the contrapositive of Tutte's 1-Factor Theorem. So no problems there.

Should number 2. also be proved using the contrapositive? Meaning to show...

$\forall S \subset G$ there exists at least one vertex that is adjacent to less than three odd components of $G-S \implies G$ has a perfect matching

I've tried drawing some sketches for the forward proof... with the subset $S$ and odd and even components, but without much progress. I thought maybe the contrapositive was the way to go, and that I needed to construct a perfect matching. Any help or hints would be greatly appreciated!
 
Physics news on Phys.org
I think I may have a proof.. I will post it here so the question is complete, but also feel free to make sure it is correct!

Proof:

Case i: $S = \emptyset$
Then both 1. and 2. are obviously true.

Case ii: $S \ne \emptyset$
Assuming 1. to be true, choose the smallest possible $S$ satisfying 1..
Claim: $|G-S|$ is even
Suppose not. Then $\emptyset$ satisfies 1., contradicting that $S$ is the smallest set satisfying 1..
Thus, $|G-S|$ is even.

Choose an arbitrary $v \in V(S)$.
Let $x = $ the number of odd components that $v$ is adjacent to. (we want to show $x \geq 3$)

Let $S^* = S - \left\{v\right\}$.
Then consider the set $G - S^*$.

Note that any components that $v$ was adjacent to when considering the set $G - S$ are merged together when considering $G - S^*$ (meaning, any components that are adjacent to $v$ become one component in our new graph). This new component may be odd or even.

Then,
$O(G - S^*) = O(G - S) - x + \delta$
where $\delta = 0$ if $x$ is even and $1$ if $x$ is odd.

Note the following...
(i.) $|S| + 2 \leq O(G - S)$ (because $|S|$ even $\implies O(G - S)$ even and $|S|$ odd $\implies O(G - S)$ odd)
(ii.) $|S^*| \geq O(G - S^*)$ (otherwise $S^*$ would be a smaller set satisfying 1., contradicting the assumption)Then,

$O(G - S) - x + \delta = O(G - S^*) \leq |S^*| = |S| - 1 \leq O(G - S) - 2 - 1 = O(G - S) - 3$
$\implies O(G - S) - x + \delta \leq O(G - S) - 3$
$\implies x \geq 3 + \delta$
where $\delta$ is $0$ or $1$, completing the proof.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K