I was having a quick look at Isaacs : Algebra - A Graduate Course and was interested in his approach to Noetherian modules. I wonder though how standard is his treatment and his terminology. Is this an accepted way to study module theory and is his term X-Group fairly standard (glimpsing at other books it does not seem to be!) and, further, if the structure he is talking about is a standard item of study, is his terminology "X-Group" standard? If not, what is the usual terminology.(adsbygoogle = window.adsbygoogle || []).push({});

A bit of information on Isaacs treatment of X-Groups follows:

In Chapter 10: Operator Groups and Unique Decompositions, on page 129 (see attachment) Isaacs defines an X-Group as follows:

0.1 DEFINITION. Let X be an arbitrary (possibly empty) set and Let G be a group. We say that G is an X-group (or group with operator set X) provided that for each [itex] x \in X [/itex] and [itex] g \in G [/itex], there is defined an element [itex] g^x \in G [/itex] such that if [itex] g, h \in G [/itex] then [itex] {(gh)}^x = g^xh^x [/itex]

I am not quite sure what the "operator set" is, but from what I can determine the notation [itex] g^x [/itex] refers to the conjugate of g with respect to x (this is defined on page 20 - see attachment)

In Chapter 10: Module Theory without Rings, Isaacs defines abelian X-groups and uses them to develop module theory and in particular Noetherian and Artinian X-groups.

Regarding a Noetherian (abelian) X-group, the definition (Isaacs page 146) is as follows:

DEFINITION. Let M be an abelian X-group and consider the poset of all X-groups ordered by the inclusion [itex] \supseteq [/itex]. We say M is Noetherian if this poset satisfies the ACC (ascending chain condition)

My question is - is this a standard and accepted way to introduce module theory and the theory of Noetherian and Artinian modules and rings.

Further, can someone give a couple of simple and explicit examples of X-groups in which the sets X and G are spelled out and some example operations are shown.

Peter

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Abelian X-Groups and Noetherian (Abelian) X-Groups

Loading...

Similar Threads - Abelian Groups Noetherian | Date |
---|---|

I Group theory in physics | Mar 27, 2017 |

I Free Abelian Groups ... Aluffi Proposition 5.6 | May 13, 2016 |

Abelianization of Lie groups | Feb 11, 2016 |

Finding non-trivial automorphisms of large Abelian groups | May 30, 2015 |

**Physics Forums - The Fusion of Science and Community**