MHB Algorithm to answer existential questions - Reduction

Click For Summary
SUMMARY

The discussion centers on the undecidability of the existential theory of the ring $F[t, t^{-1}]$, where $F$ is a field with characteristic $p > 2$. Key lemmas establish that an element $x$ in $F[t, t^{-1}]$ is a power of $t$ if it divides 1 and $t-1$ divides $x-1$. The proof demonstrates that if an algorithm existed for existential questions in $F[t, t^{-1}]$, it could be transformed into one for the integers $\mathbb{Z}$, which is known to be undecidable. The discussion concludes with a query regarding the theorem's applicability for $p = 2$.

PREREQUISITES
  • Understanding of polynomial rings, specifically $F[t, t^{-1}]$.
  • Knowledge of existential theories in mathematical logic.
  • Familiarity with divisibility in integers and its implications.
  • Concept of field characteristics, particularly for $p > 2$.
NEXT STEPS
  • Study the properties of polynomial rings and their applications in algebra.
  • Research the implications of undecidability in existential theories.
  • Explore the relationship between powers of elements in rings and their representation in integers.
  • Investigate the characteristics of fields and their impact on algebraic structures.
USEFUL FOR

Mathematicians, logicians, and computer scientists interested in algebraic structures, undecidability, and the foundations of mathematical logic.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Lemma 1.

For any $x$ in the ring $F[t,t^{-1}]$ ($F[t,t^{-1}]$: the polynomials in $t$ and $t^{-1}$ with coefficients in the field $F$), $x$ is a power of $t$ if and only if $x$ divides $1$ and $t-1$ divides $x-1$ (the divisibilities are meant, of course, in $F[t, t^{-1}]$).
Lemma 2.

$t^n-1$ divides $t^m-1$ in $F[t, t^{-1}]$ ($F[t,t^{-1}]$: the polynomials in $t$ and $t^{-1}$ with coefficients in the field $F$) if and only if $n$ divides $m$ in $\mathbb{Z}$.
Lemma 3.

Assume that the characteristic of $F$ is $p$ and $p>2$.
Then $(t^m-1)/(t^n-1)$ is a square in $F[t, t^{-1}]$ ($F[t,t^{-1}]$: the polynomials in $t$ and $t^{-1}$ with coefficients in the field $F$) if and only if $(\exists s \in \mathbb{Z}) m=np^s$.
THEOREM.

Assume that $F$ has characteristic $p>2$. Then the existential theory of $F[t, t^{-1}]$ in the language is $\{+,\cdot , 0,1,t\}$ is undecidable.

PROOF.

We think of the powers of $t$ as representing the integers; thus, $t^n$ represents the integer $n$. By Lemma $1$, the set of powers of $t$ is existentially definable.

Addition of integers $m+n$ corresponds to multiplication of the corresponding powers of $t$, $t^mt^n$.

By Lemma $2$, the relation "$n$ divides $m$" (where $n$ and $m$ are given through their corresponding powers $t^n$ and $t^m$) is existentially definable.

Moreover, the relation $(\exists s \in \mathbb{Z})m=p^sn$, by Lemma $3$, is also existentially definable.

Therefore, if we had an algorithm to answer existential questions over $F[t, t^{-1}]$, we could convert it to an algorithm to answer existential questions in $\mathbb{Z}$ with the structure of addition, divisibility, and the relation $(\exists s \in \mathbb{Z})m=p^sn$.

In an other paper it is shown that the last structure has undecidable positive existential theory (more accurately, one can define multiplication in a positive existential way in it, and therefore, the complexity of its positive existential theory is the same as the complexity of the positive existential theory of $\mathbb{Z}$ with addition and multiplication).

It follows that the existential theory of $F[t, t^{-1}]$ is undecidable.
That's how I understand the proof:

We suppose that the existential theory of $F[t,t^{-1}]$ is decidable, that means that there is an algorithm that answers existential questions over $F[t,t^{-1}]$.

We want to reduce it to the existential theory of $\mathbb{Z}$ with the structure of addition, divisibility, and the relation $(\exists s\in\mathbb{Z})m=p^sn$, which is undecidable.

To do so, we do the following:

we know from Lemma $1$ that each element $x$ of $F[t,t^{-1}]$ is a power of $t$, $x=t^n$.

One part of the "translation" of the reduction is the mapping $t^n\mapsto n$.

We have that $t^mt^n=t^{m+n}\mapsto m+n$ so $\mathbb{Z}$ has the structure of addition.

By Lemma $2$ , $\mathbb{Z}$ has the structure of divisibility.

And by Lemma $3$, $\mathbb{Z}$ has the structure of the relation $(\exists s\in \mathbb{Z})m=np^s$.
Is that the idea of reduction? Have I understood it correctly?
 
Physics news on Phys.org
Why doesn't the theorem hold also for $p=2$ ?
 
If there are an infinite number of natural numbers, and an infinite number of fractions in between any two natural numbers, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and... then that must mean that there are not only infinite infinities, but an infinite number of those infinities. and an infinite number of those...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 0 ·
Replies
0
Views
417
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 27 ·
Replies
27
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
2K