MHB Algorithm to answer existential questions - Reduction

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Lemma 1.

For any $x$ in the ring $F[t,t^{-1}]$ ($F[t,t^{-1}]$: the polynomials in $t$ and $t^{-1}$ with coefficients in the field $F$), $x$ is a power of $t$ if and only if $x$ divides $1$ and $t-1$ divides $x-1$ (the divisibilities are meant, of course, in $F[t, t^{-1}]$).
Lemma 2.

$t^n-1$ divides $t^m-1$ in $F[t, t^{-1}]$ ($F[t,t^{-1}]$: the polynomials in $t$ and $t^{-1}$ with coefficients in the field $F$) if and only if $n$ divides $m$ in $\mathbb{Z}$.
Lemma 3.

Assume that the characteristic of $F$ is $p$ and $p>2$.
Then $(t^m-1)/(t^n-1)$ is a square in $F[t, t^{-1}]$ ($F[t,t^{-1}]$: the polynomials in $t$ and $t^{-1}$ with coefficients in the field $F$) if and only if $(\exists s \in \mathbb{Z}) m=np^s$.
THEOREM.

Assume that $F$ has characteristic $p>2$. Then the existential theory of $F[t, t^{-1}]$ in the language is $\{+,\cdot , 0,1,t\}$ is undecidable.

PROOF.

We think of the powers of $t$ as representing the integers; thus, $t^n$ represents the integer $n$. By Lemma $1$, the set of powers of $t$ is existentially definable.

Addition of integers $m+n$ corresponds to multiplication of the corresponding powers of $t$, $t^mt^n$.

By Lemma $2$, the relation "$n$ divides $m$" (where $n$ and $m$ are given through their corresponding powers $t^n$ and $t^m$) is existentially definable.

Moreover, the relation $(\exists s \in \mathbb{Z})m=p^sn$, by Lemma $3$, is also existentially definable.

Therefore, if we had an algorithm to answer existential questions over $F[t, t^{-1}]$, we could convert it to an algorithm to answer existential questions in $\mathbb{Z}$ with the structure of addition, divisibility, and the relation $(\exists s \in \mathbb{Z})m=p^sn$.

In an other paper it is shown that the last structure has undecidable positive existential theory (more accurately, one can define multiplication in a positive existential way in it, and therefore, the complexity of its positive existential theory is the same as the complexity of the positive existential theory of $\mathbb{Z}$ with addition and multiplication).

It follows that the existential theory of $F[t, t^{-1}]$ is undecidable.
That's how I understand the proof:

We suppose that the existential theory of $F[t,t^{-1}]$ is decidable, that means that there is an algorithm that answers existential questions over $F[t,t^{-1}]$.

We want to reduce it to the existential theory of $\mathbb{Z}$ with the structure of addition, divisibility, and the relation $(\exists s\in\mathbb{Z})m=p^sn$, which is undecidable.

To do so, we do the following:

we know from Lemma $1$ that each element $x$ of $F[t,t^{-1}]$ is a power of $t$, $x=t^n$.

One part of the "translation" of the reduction is the mapping $t^n\mapsto n$.

We have that $t^mt^n=t^{m+n}\mapsto m+n$ so $\mathbb{Z}$ has the structure of addition.

By Lemma $2$ , $\mathbb{Z}$ has the structure of divisibility.

And by Lemma $3$, $\mathbb{Z}$ has the structure of the relation $(\exists s\in \mathbb{Z})m=np^s$.
Is that the idea of reduction? Have I understood it correctly?
 
Physics news on Phys.org
Why doesn't the theorem hold also for $p=2$ ?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Back
Top