-aux.2.2.4 de y'+(\cot x)y&=2 \csc x; y(\pi/2)=a

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on solving the initial value problem (IVP) for the ordinary differential equation (ODE) given by \(y'+(\cot x)y=2 \csc x\) with the initial condition \(y(\pi/2)=1\). The solution involves integrating using the integrating factor \(u(x)=\sin x\) and leads to the final solution \(y(x)=(2x+1-\pi)\csc(x)\) for \(0 PREREQUISITES

  • Understanding of ordinary differential equations (ODEs)
  • Familiarity with integrating factors in differential equations
  • Knowledge of trigonometric functions and their properties
  • Ability to perform integration and apply initial conditions
NEXT STEPS
  • Study the method of integrating factors in ODEs
  • Learn about initial value problems (IVPs) and their solutions
  • Explore the properties and applications of trigonometric functions in calculus
  • Investigate the use of computational tools like Wolfram Alpha for solving differential equations
USEFUL FOR

Mathematics students, educators, and professionals dealing with differential equations, particularly those focused on initial value problems and trigonometric applications in calculus.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
652
$$\begin{array}{lrll}
\textit {Given }\\
&y'+(\cot x)y&=2 \csc x \qquad y(\pi/2)=1 &_{(1)}\\
\textit {Find u(x) }\\
&\displaystyle u(x)&=\exp\int \cot x \, dx\\
&&\displaystyle=e^{\ln{\sin{x}}}\\
&&\displaystyle=\sin{x} &_{(2)}\\
\textit{multiply thru w/ $\sin x$} \\
&\sin x y' +\cos x y&=1 &_{(3)}\\
\textit{rewrite:}\\
&(\sin{x} y)'&=1 &_{(4)}\\
\textit{Integrate }\\
&\displaystyle \sin{x} y
&=\displaystyle\int \, dx\\
&&=x+c &_{(5)}\\
\textit{divide thru by $\sin{x}$}\\
&\displaystyle y
&=x\csc x+\displaystyle\frac{c}{\sin x} &_{(6)}\\
\textit{So if }\\
&\displaystyle y(\pi/2)
&=\displaystyle\frac{\pi}{2}(1)+c=1
% +\displaystyle\frac{c}{\sin \frac{\pi}{2}}=1\\
\\ \\
&&c=\displaystyle 1-\frac{\pi}{2} &_{(7)}\\
\textit{finally W|A says}\\
%&y&=\color{red}{\displaystyle\frac{2x+1-\pi}{\sin{x}},
%\quad 0<x<\pi}
&y&=\color{red}{\displaystyle y c_1 \csc{x}
+ 2 x \csc{x},
\quad 0<x<\pi} &_{(8)}\\
\end{array}$$

ok I didnt quite get the last 3 steps red is W|A answer
 
Last edited:
Physics news on Phys.org
When you multiply through by $\mu(x)$, you should have:

$$\frac{d}{dx}(\sin(x)y)=2$$

And then integrate:

$$\sin(x)y=2x+c_1$$

$$y(x)=2x\csc(x)+c_1\csc(x)$$

Determine parameter from initial values

$$y\left(\frac{\pi}{2}\right)=2\left(\frac{\pi}{2}\right)\csc\left(\frac{\pi}{2}\right)+c_1\csc\left(\frac{\pi}{2}\right)=\pi+c_1=1\implies c_1=1-\pi$$

And so the solution to the IVP is:

$$y(x)=2x\csc(x)+(1-\pi)\csc(x)=(2x+1-\pi)\csc(x)$$

This is equivalent to what W|A returns for me. In the original ODE, we have:

$$x\ne\pi k$$ where $$k\in\mathbb{Z}$$

And we find the initial value is in the interval:

$$0<x<\pi$$
 
mega mahalo again

I probably would have made if carried the 2 thru

(Headbang)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K