- #1

- 150

- 0

i need to integrate

[tex]-(p(y)f(y)')'=m^2w(y)f(y)[/tex]

where

[tex]p(y)=e^{4ky}(1-4ak^2)[/tex] and [tex]w=-4ae^{2y}k\delta(y)[/tex]

but y between [0,infinity[

¿i calculate between [tex]\int^{epsilon}_0????[/tex] or ¿i calculate between [-epsilon,epsilon]?????

but, what is??

[tex]\int^{\epsilon}_0(p(y)f(y)')'dy[/tex]

whit f is not continuous in zero

the result is

[tex]f(+\epsilon)=-\frac{m^24akf(0)}{1-4ak^2}[/tex]

[tex]-(p(y)f(y)')'=m^2w(y)f(y)[/tex]

where

[tex]p(y)=e^{4ky}(1-4ak^2)[/tex] and [tex]w=-4ae^{2y}k\delta(y)[/tex]

but y between [0,infinity[

¿i calculate between [tex]\int^{epsilon}_0????[/tex] or ¿i calculate between [-epsilon,epsilon]?????

but, what is??

[tex]\int^{\epsilon}_0(p(y)f(y)')'dy[/tex]

whit f is not continuous in zero

the result is

[tex]f(+\epsilon)=-\frac{m^24akf(0)}{1-4ak^2}[/tex]

Last edited: