- #1
alejandrito29
- 150
- 0
i need to integrate
[tex]-(p(y)f(y)')'=m^2w(y)f(y)[/tex]
where
[tex]p(y)=e^{4ky}(1-4ak^2)[/tex] and [tex]w=-4ae^{2y}k\delta(y)[/tex]
but y between [0,infinity[
¿i calculate between [tex]\int^{epsilon}_0?[/tex] or ¿i calculate between [-epsilon,epsilon]?
but, what is??
[tex]\int^{\epsilon}_0(p(y)f(y)')'dy[/tex]
whit f is not continuous in zero
the result is
[tex]f(+\epsilon)=-\frac{m^24akf(0)}{1-4ak^2}[/tex]
[tex]-(p(y)f(y)')'=m^2w(y)f(y)[/tex]
where
[tex]p(y)=e^{4ky}(1-4ak^2)[/tex] and [tex]w=-4ae^{2y}k\delta(y)[/tex]
but y between [0,infinity[
¿i calculate between [tex]\int^{epsilon}_0?[/tex] or ¿i calculate between [-epsilon,epsilon]?
but, what is??
[tex]\int^{\epsilon}_0(p(y)f(y)')'dy[/tex]
whit f is not continuous in zero
the result is
[tex]f(+\epsilon)=-\frac{m^24akf(0)}{1-4ak^2}[/tex]
Last edited: