MHB Can a nonnegative polynomial be expressed as a sum of squares of polynomials?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
A nonnegative polynomial can indeed be expressed as a sum of squares of polynomials, as demonstrated in the Problem of the Week. The discussion highlights that for a polynomial p(x) that is nonnegative for all real x, there exist polynomials f_1(x),...,f_k(x) such that p(x) equals the sum of their squares. The problem was originally featured in the 1999 William Lowell Putnam Mathematical Competition. Opalg provided a correct solution, while Kiwi received honorable mention for a mostly correct approach with minor errors. This confirms the validity of the sum of squares representation for nonnegative polynomials.
Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

Let $p(x)$ be a polynomial that is nonnegative for all real $x$. Prove that for some $k$, there are polynomials $f_1(x),\dots,f_k(x$) such that
\[p(x) = \sum_{j=1}^k (f_j(x))^2.\]

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 249 - Jan 16, 2017

This was Problem A-2 in the 1999 William Lowell Putnam Mathematical Competition.

Congratulations to Opalg for his correct solution, which follows. Honorable mention to Kiwi for a mostly correct solution with only minor holes.

This can be done with $k=2$.

To start with, if $p(x)$ is a real polynomial that is always nonnegative then it must have even degree, and therefore an even number of (real or complex) roots. Also, the coefficient of the highest power of $x$ must be positive and can therefore be written as a square, say $d^2$.

Any real root of $p(x)$ must have even multiplicity (otherwise the polynomial would go negative on one side of the root). So a real root $x=c$ corresponds to a factor of the form $(x-c)^{2m}.$

Complex roots must occur in conjugate pairs of the form $x = a+ib$ and $x=a-ib.$ The corresponding factors of $p(x)$ are $(x-a-ib)(x-a+ib) = (x-a)^2 + b^2.$

Thus $p(x)$ is the product of factors of the form $d^2$, $(x-c)^2$ and $(x-a)^2 + b^2$. But a square times a sum of two squares is again a sum of two squares, and the product of two sums of two squares is also a sum of two squares (because of the identity $(A^2+B^2)(C^2+D^2) = (AC+BD)^2 + (AD-BC)^2$). By repeatedly applying these facts, you see that $p(x)$ must be the sum of two squares (of polynomials).
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K