MHB Can E(Z) be determined from E(X) and E(Y) when X and Y are independent?

oyth94
Messages
32
Reaction score
0
Hi I know this may be a silly question but i am doubting myself on how i did this question:

Suppose X and Y are independent, with E(X) = 5 and E(Y) = 6. For each of the following variables Z, either compute E(Z) or explain why we cannot determine
E(Z) from the available information:
Z = (2+X)(3X + 4Y)= 6X + 8Y + 3X^2 + 4XY

So I did E(Z= 6X + 8Y+ 3X^2 + 4XY) = 6E(X) + 8E(Y) + 3E(X^2) + 4E(X)(Y)
Im not sure if i am on the right track so far (ie i just have to plug in E(X) and E(Y) to find E(Z)
but doesn't this require some integrals since it is in the absolute continuous case? Otherwise if we plug it in isn't it not independent because the answer doesn't equal to E(XY)?
 
Physics news on Phys.org
Re: expected value independence

The problem is that You know $E\{X\}$ and $E\{Y\}$, that X and Y are independent and nothing else. That permits You to find $E\{X Y\}$ but for $E\{X^{2}\}$ You have to know $\text{Var} \{X\}$ and apply the identity $\text{Var} \{X\} = E \{X^{2}\} - E^{2} \{X\}$... Kind regards $\chi$ $\sigma$
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top